EBK PHYSICAL CHEMISTRY
EBK PHYSICAL CHEMISTRY
2nd Edition
ISBN: 8220100477560
Author: Ball
Publisher: Cengage Learning US
Question
Book Icon
Chapter 21, Problem 21.52E
Interpretation Introduction

(a)

Interpretation:

The two-particle coulombic energy of attraction is to be compared with more precise calculation of the lattice energy for the given ionic crystal.

Concept introduction:

The amount of energy released when one formula unit moles of oppositely charged gaseous ions binds together to form a crystal is known as the lattice energy. The value of lattice energy is negative. It is used as a measure for stability of a crystal.

Expert Solution
Check Mark

Answer to Problem 21.52E

The two-particle coulombic energy of attraction is 399.126kJmol1 and the calculated lattice energy is 636.2kJmol1. The magnitude of two-particle coulombic energy of attraction is less than the lattice energy.

Explanation of Solution

According to Coulomb’s law the potential energy of two oppositely charged particles that are r distance from each other is given by,

E=q+q4πε0r …(1)

Where,

q+ and q are oppositely charged ions.

ε0 is the permittivity of free space and its value is 8.854×1012C2/Jm.

The closed distance between the opposite ions is calculated by considering the Table 21.4. The radii of Cs+ and Cl is 1.67A and 1.81A respectively. Thus, the closest distance between the opposite ions is calculated as follows:

r=(1.67+1.81)Ar=3.48A

Thus, the closest distance between the opposite ions is 3.48A.

Substitute the values of charge on electron, permittivity of space and distance between two ions in equation (1).

E=(+1.602×1019C)(1.602×1019C)4π(8.854×1012C2/Jm)×3.48AE=(+1.602×1019C)(1.602×1019C)4π(8.854×1012C2/Jm)×3.48×1010mE=6.63×1019J

For one mole of ions, the energy is multiplied by Avogadro number as shown below.

E=6.63×1019J×6.02×1023mol1E=399.126×103Jmol1E=399.126kJmol1

Thus, the two-particle coulombic energy of attraction is 399.126kJmol1.

The lattice energy is given by the expression as shown below.

latticeenergy=NAMZ2e24πε0r(1ρr) …(2)

Where,

NA is the Avogadro number.

M is the Madelung constant.

Z is the greatest common divisor of the magnitude of the charges on the ions.

e is the charge on electron.

ε0 is the permittivity in free space.

r is the closest distance between the opposite ions.

ρ is the repulsive range parameter.

From the Table 21.6, the value of M and ρ for CsCl is 1.7627 and 0.331A respectively.

The CsCl is 1:1 compound. Thus, the Z for CsCl is 1.

Substitute value of Z, M, ρ, and r in equation (1).

latticeenergy=(6.02×1023mol1)(1.7627)(1)2(1.602×1019C)2[4π×(8.854×1012C2/Jm)](3.48×1010m)(10.331A3.48A)=7.03×105(0.905)Jmol1=6.362×105Jmol1=636.2kJmol1

Thus, the calculated lattice energy is 636.2kJmol1.

Therefore, the magnitude of two-particle coulombic energy of attraction is less than the lattice energy.

Conclusion

The two-particle coulombic energy of attraction is 399.126kJmol1 and the calculated lattice energy is 636.2kJmol1. The magnitude of two-particle coulombic energy of attraction is less than the lattice energy.

Interpretation Introduction

(b)

Interpretation:

The two-particle coulombic energy of attraction is to be compared with more precise calculation of the lattice energy for the given ionic crystal.

Concept introduction:

The amount of energy released when one formula unit moles of oppositely charged gaseous ions binds together to form a crystal is known as the Lattice energy. The value of lattice energy is negative. It is used as the measure for stability of a crystal.

Expert Solution
Check Mark

Answer to Problem 21.52E

The two-particle coulombic energy of attraction is 1020.992kJmol1 and the calculated lattice energy is 5268.4kJmol1. The magnitude of two-particle coulombic energy of attraction is less than the lattice energy.

Explanation of Solution

According to Coulomb’s law the potential energy of two oppositely charged particles that are r distance from each other is given by,

E=q+q4πε0r … (1)

Where,

q+ and q are oppositely charged ions.

ε0 is the permittivity of free space and its value is 8.854×1012C2/Jm.

The closed distance between the opposite ions is calculated by considering the Table 21.4. The radii of Zn2+ and S2 is 0.74A and 1.84A respectively. Thus, the closest distance between the opposite ions is calculated as follows:

r=(0.74+1.84)Ar=1.36A

Thus, the closest distance between the opposite ions is 1.36A.

Substitute the values of charge on electron, permittivity of space and distance between two ions in equation (1).

E=(+1.602×1019C)(1.602×1019C)4π(8.854×1012C2/Jm)×1.36AE=(+1.602×1019C)(1.602×1019C)4π(8.854×1012C2/Jm)×1.36×1010mE=1.696×1018J

For one mole of ions, the energy is multiplied by Avogadro number as shown below.

E=1.696×1018J×6.02×1023mol1E=1020.992×103Jmol1E=1020.992kJmol1

Thus, the two-particle coulombic energy of attraction is 1020.992kJmol1.

The lattice energy is given by the expression as shown below.

latticeenergy=NAMZ2e24πε0r(1ρr)… (2)

Where,

NA is the Avogadro number.

M is the Madelung constant.

Z is the greatest common divisor of the magnitude of the charges on the ions.

e is the charge on electron.

ε0 is the permittivity in free space.

r is the closest distance between the opposite ions.

ρ is the repulsive range parameter.

From the Table 21.6, the value of M and ρ for ZnS is 1.6381 and 0.289A respectively.

ZnS is 2:2 compound. Thus, the Z for ZnS is 2.

Substitute value of Z, M, ρ, and r in equation (1).

latticeenergy=(6.02×1023mol1)(1.6381)(2)2(1.602×1019C)2[4π×(8.854×1012C2/Jm)](1.36×1010m)(10.289A1.36A)=6.69×106(0.7875)Jmol1=5.2684×106Jmol1=5268.4kJmol1

Thus, the calculated lattice energy is 5268.4kJmol1.

Therefore, the magnitude of two-particle coulombic energy of attraction is less than the lattice energy.

Conclusion

The two-particle coulombic energy of attraction is 1020.992kJmol1 and the calculated lattice energy is 5268.4kJmol1. The magnitude of two-particle coulombic energy of attraction is less than the lattice energy.

Interpretation Introduction

(c)

Interpretation:

The two-particle coulombic energy of attraction is to be compared with more precise calculation of the lattice energy for the given ionic crystal.

Concept introduction:

The amount of energy released when one formula unit moles of oppositely charged gaseous ions binds together to form a crystal is known as the Lattice energy. The value of lattice energy is negative. It is used as the measure for stability of a crystal.

Expert Solution
Check Mark

Answer to Problem 21.52E

The two-particle coulombic energy of attraction is 697.72kJmol1 and the calculated lattice energy is 5874kJmol1. The magnitude of two-particle coulombic energy of attraction is less than the lattice energy.

Explanation of Solution

According to Coulomb’s law the potential energy of two oppositely charged particles that are r distance from each other is given by,

E=q+q4πε0r…(1)

Where,

q+ and q are oppositely charged ions.

ε0 is the permittivity of free space and its value is 8.854×1012C2/Jm.

The closed distance between the opposite ions is calculated by considering the Table 21.4. The radii of Ti4+ and O2 is 0.68A and 1.31A respectively. Thus, the closest distance between the opposite ions is calculated as follows:

r=(0.68+1.31)Ar=1.99A

Thus, the closest distance between the opposite ions is 1.99A.

Substitute the values of charge on electron, permittivity of space and distance between two ions in equation (1).

E=(+1.602×1019C)(1.602×1019C)4π(8.854×1012C2/Jm)×1.99AE=(+1.602×1019C)(1.602×1019C)4π(8.854×1012C2/Jm)×1.99×1010mE=1.159×1018J

For one mole of ions, the energy is multiplied by Avogadro number as shown below.

E=1.159×1018J×6.02×1023mol1E=697.72×103Jmol1E=697.72kJmol1

Thus, the two-particle coulombic energy of attraction is 697.72kJmol1.

The lattice energy is given by the expression as shown below.

latticeenergy=NAMZ2e24πε0r(1ρr) … (2)

Where,

NA is the Avogadro number.

M is the Madelung constant.

Z is the greatest common divisor of the magnitude of the charges on the ions.

e is the charge on electron.

ε0 is the permittivity in free space.

r is the closest distance between the opposite ions.

ρ is the repulsive range parameter.

From the Table 21.6, the value of M and ρ for ZnS is 1.6381 and 0.289A respectively.

TiO2 is 2:1 compound. Thus, the Z for TiO2 is 2.

Substitute value of Z, M, ρ, and r in equation (1).

latticeenergy=(6.02×1023mol1)(2.408)(2)2(1.602×1019C)2[4π×(8.854×1012C2/Jm)](1.99×1010m)(10.250A1.99A)=6.721×106(0.874)Jmol1=5.874×106Jmol1=5874kJmol1

Thus, the calculated lattice energy is 5874kJmol1.

Therefore, the magnitude of two-particle coulombic energy of attraction is less than the lattice energy.

Conclusion

The two-particle coulombic energy of attraction is 697.72kJmol1 and the calculated lattice energy is 5874kJmol1. The magnitude of two-particle coulombic energy of attraction is less than the lattice energy.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Briefly explain inverse spinels.
Calculate the solubility at 25 °C of AgBr in pure water and in 0.34 M NaCN. You'll probably find some useful data in the ALEKS Data resource. Round your answer to 2 significant digits. Solubility in pure water: Solubility in 0.34 M NaCN: 7.31 × 10 M x10 Ом
Differentiate between normal spinels and inverse spinels.

Chapter 21 Solutions

EBK PHYSICAL CHEMISTRY

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning