
Concept explainers
(a)
Interpretation:
The angles of diffraction for a cubic crystal for the given incoming X radiation are to be calculated.
Concept introduction:
A unit cell of the crystal is the three-dimensional arrangement of the atoms present in the crystal. The unit cell is the smallest and simplest unit of the crystal which on repetition forms an entire crystal. The parameters of a crystal can be obtained experimentally by X-ray diffraction technique.

Answer to Problem 21.64E
The table that represents the miller indices and corresponding value of diffraction angle is shown below as,
Miller indices |
Diffraction angle |
Explanation of Solution
The wavelength of the given X-ray is
The given lattice parameter is
The value of
The Bragg equation for diffraction of X rays is given by an expression as shown below.
Where,
•
•
•
•
•
Rearrange the equation (1) for the value of
The value of
Miller indices |
Diffraction angle |
|
The table that represents the miller indices and corresponding value of diffraction angle is shown below as,
Miller indices |
Diffraction angle |
(b)
Interpretation:
The diffractions that would be absent if the given crystal were body-centered cubic or face centered cubic are to be determined.
Concept introduction:
A unit cell of the crystal is the three-dimensional arrangement of the atoms present in the crystal. The unit cell is the smallest and simplest unit of the crystal which on repetition forms an entire crystal. The parameters of a crystal can be obtained experimentally by X-ray diffraction technique.

Answer to Problem 21.64E
The diffractions that would be absent if the given crystal was body-centered cubic are represented in the table shown below.
Miller indices |
Diffraction angle |
The diffractions that would be absent if the given crystal was face-centered cubic are represented in the table shown below.
Miller indices |
Diffraction angle |
Explanation of Solution
From Table
The Miller indices of diffractions those are present in body centered cubic crystal are
Therefore, the diffractions that would be absent if the given crystal was body-centered cubic are represented in the table shown below as,
Miller indices |
Diffraction angle |
|
From Table
The Miller indices of diffractions those are present in face centered cubic crystal are
Therefore, the diffractions that would be absent if the given crystal was face-centered cubic are represented in the table shown below as,
Miller indices |
Diffraction angle |
|
The diffractions that would be absent if the given crystal was body-centered cubic are represented in the table shown below.
Miller indices |
Diffraction angle |
The diffractions that would be absent if the given crystal was face-centered cubic are represented in the table shown below.
Miller indices |
Diffraction angle |
Want to see more full solutions like this?
Chapter 21 Solutions
EBK PHYSICAL CHEMISTRY
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning


