Concept explainers
(a)
Interpretation:
Binding energy per nucleon for the three isotopes of phosphorus has to be calculated.
Concept Introduction:
Binding energy is a short strong force that is present in the nucleus which holds the protons together by overcoming the electrostatic repulsive forces between them. Whenever there is a change in energy, a corresponding change in mass is also observed and this can be given by the equation shown below,
When more particles combine to form nuclear there is a great change in mass and energy. The nuclear stabilities can be compared more appropriately by dividing the binding energy of nucleus with the number of nucleons. The result obtained is the binding energy per nucleon. Protons and neutrons are known as nucleons. Binding energy is represented as
(a)
Explanation of Solution
Binding energy per nucleon for
The change in mass can be calculated as shown below,
Nuclear binding energy can be calculated in megaelectron volts as shown below,
Binding energy per nucleon can be calculated as shown below,
There is a total of 30 nucleons in phosphorus-30. Hence, the binding energy per nucleon can be calculated as,
Binding energy per nucleon in
Binding energy per nucleon for
Atomic number of phosphorus is 15. This means there are 15 protons and 16 neutrons in the given isotope.
The change in mass can be calculated as shown below,
Nuclear binding energy can be calculated in megaelectron volts as shown below,
Binding energy per nucleon can be calculated as shown below,
There is a total of 31 nucleons in phosphorus-31. Hence, the binding energy per nucleon can be calculated as,
Binding energy per nucleon in
Binding energy per nucleon for
Atomic number of phosphorus is 15. This means there are 15 protons and 17 neutrons in the given isotope.
The change in mass can be calculated as shown below,
Nuclear binding energy can be calculated in megaelectron volts as shown below,
Binding energy per nucleon can be calculated as shown below,
There is a total of 32 nucleons in phosphorus-32. Hence, the binding energy per nucleon can be calculated as,
Binding energy per nucleon in
(b)
Interpretation:
The isotope that is stable and the isotopes that are radioactive has to be identified by comparing the binding energy of the three isotopes of phosphorus has to be given.
(b)
Explanation of Solution
Binding energy per nucleon in
It is known that the nucleus that has greater binding energy will be more stable. Therefore, the isotope that is stable in the three isotopes of phosphorus is
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry: Principles and Practice
- Definition and classification of boranes.arrow_forwardWhich of the terms explain the relationship between the two compounds? CH2OH Он Он Он Он α-D-galactose anomers enantiomers diastereomers epimers CH2OH ОН O он Он ОН B-D-galactosearrow_forwardHi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forward
- Hi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forwardHi, I need help on my practice final, if you could explain how to solve it offer strategies and dumb it down that would be amazing. Detail helpsarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning