
Concept explainers
(a)
Interpretation:
Given equation has to be completed and balanced.
(a)

Explanation of Solution
Given equation is written as shown below.
Sum of the
Sum of atomic number on the reactant side is 94. Therefore, the missing element on the product side has an atomic number of 92. The element that has atomic number as 92 is uranium.
Sum of mass number on the reactant side is 242. Mass number of the missing element is found to be 238, by finding the difference between the mass number on reactant side and product side. Therefore, the element uranium has a mass number of 238. Complete equation can be given as shown below.
(b)
Interpretation:
Given equation has to be completed and balanced.
(b)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the product side is 15. Atomic number of the missing element is found to be 15, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 15 is phosphorus.
Sum of mass number on the product side is 32. Mass number of the missing element is found to be 32, by finding the difference between the mass number on reactant side and product side. Therefore, the element phosphorus has a mass number of 32. Complete equation can be given as shown below.
(c)
Interpretation:
Given equation has to be completed and balanced.
(c)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the product side is 103. Atomic number of the missing element is found to be 5, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 5 is boron.
Sum of mass number on the product side is 262. Mass number of the missing element is found to be 10, by finding the difference between the mass number on reactant side and product side. Therefore, the element boron has a mass number of 10. Complete equation can be given as shown below.
(d)
Interpretation:
Given equation has to be completed and balanced.
(d)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the product side is 25. Atomic number of the missing element is found to be
Sum of mass number on the product side is 55. Mass number of the missing element is found to be 0, by finding the difference between the mass number on reactant side and product side. Therefore, the particle that has atomic number of
(e)
Interpretation:
Given equation has to be completed and balanced.
(e)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the reactant side is 8. Therefore, the missing element on the product side has an atomic number of 7. The element that has atomic number as 7 is nitrogen.
Sum of mass number on the reactant side is 15. Mass number of the missing element is found to be 15, by finding the difference between the mass number on reactant side and product side. Therefore, the element nitrogen has a mass number of 15. Complete equation can be given as shown below.
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry: Principles and Practice
- What is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forward
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning




