Why is the following situation impossible ? A new diesel engine that increases fuel economy over previous models is designed. Automobiles fitted with this design become incredible best sellers. Two design features are responsible for the increased fuel economy: (1) the engine is made entirely of aluminum to reduce the weight of the automobile, and (2) the exhaust of the engine is used to prewarm the air to 50°C before it enters the cylinder to increase the final temperature of the compressed gas. The engine has a c ompression ratio —that is, the ratio of the initial volume of the air to its final volume after compression—of 14.5. The compression process is adiabatic, and the air behaves as a diatomic ideal gas with γ = 1.40.
Why is the following situation impossible ? A new diesel engine that increases fuel economy over previous models is designed. Automobiles fitted with this design become incredible best sellers. Two design features are responsible for the increased fuel economy: (1) the engine is made entirely of aluminum to reduce the weight of the automobile, and (2) the exhaust of the engine is used to prewarm the air to 50°C before it enters the cylinder to increase the final temperature of the compressed gas. The engine has a c ompression ratio —that is, the ratio of the initial volume of the air to its final volume after compression—of 14.5. The compression process is adiabatic, and the air behaves as a diatomic ideal gas with γ = 1.40.
Solution Summary: The author explains that the given situation is impossible due to large final temperature, lower compression ratio, seizure of piston and the reduction in resistance to shocks.
Why is the following situation impossible? A new diesel engine that increases fuel economy over previous models is designed. Automobiles fitted with this design become incredible best sellers. Two design features are responsible for the increased fuel economy: (1) the engine is made entirely of aluminum to reduce the weight of the automobile, and (2) the exhaust of the engine is used to prewarm the air to 50°C before it enters the cylinder to increase the final temperature of the compressed gas. The engine has a compression ratio—that is, the ratio of the initial volume of the air to its final volume after compression—of 14.5. The compression process is adiabatic, and the air behaves as a diatomic ideal gas with γ = 1.40.
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Make sure to draw a Free Body Diagram as well
Chapter 21 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.