If you peel two strips of transparent tape off the same roll and immediately let them hang near each other. they will repel each other. If you then stick the sticky side of one to the shiny side of the other and rip them apart, they will attract each other. Give a plausible explanation, involving transfer of electrons between the strips of tape, for this sequence of events.
If you peel two strips of transparent tape off the same roll and immediately let them hang near each other. they will repel each other. If you then stick the sticky side of one to the shiny side of the other and rip them apart, they will attract each other. Give a plausible explanation, involving transfer of electrons between the strips of tape, for this sequence of events.
If you peel two strips of transparent tape off the same roll and immediately let them hang near each other. they will repel each other. If you then stick the sticky side of one to the shiny side of the other and rip them apart, they will attract each other. Give a plausible explanation, involving transfer of electrons between the strips of tape, for this sequence of events.
Expert Solution & Answer
To determine
An explanation to describe the transfer of electrons between the two strips of the transparent tape.
Explanation of Solution
The flow of electrons can be found using the concept of electric attraction and repulsion. Two positively charged objects repel each other and two negatively charged objects repel each other; positively charged objects and negatively charged objects will attract each due to the electric force.
In the process of peeling the strip of tape, flow of electrons which are negatively charged occurs between the strip and rest part of the tape roll. The process of peeling off the two strips generates two negatively charged objects which in turn causes repulsion. Stick the two strips as sticky side of one to the shiny side of the other and pull it forcibly from each other, flow of electrons occurs and ends up with the net charge of positively charged object due to the electric force. Thus, the attraction occurs between positively and negatively charged objects.
Conclusion: In electrostatics, flow of electrons occurs and attraction takes place only when stuck and rip process occurs among the strips of transparent tape.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
Chapter 21 Solutions
University Physics with Modern Physics (14th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY