
(a)
Interpretation:
Standard cell potential for the overall reaction below should be calculated and whether the reaction is spontaneous or non spontaneous should be identified.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An
(a)

Answer to Problem 13SSC
Standard cell potential for
Since for
Explanation of Solution
For the overall reaction,
The half cell reactions are as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since copper has positive electrode potential then aluminum so reduction occurs at copper electrode and oxidation occurs at aluminum electrode.
The formula for cell potential is as follows:
Where,
Substitute
Standard cell potential for
Since for redox reaction to be spontaneous,
(b)
Interpretation:
Standard cell potential for the overall reaction below should be calculated and whether the reaction is spontaneous or non spontaneous should be identified.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(b)

Answer to Problem 13SSC
Standard cell potential for
Since for redox reaction to be spontaneous,
Explanation of Solution
For the overall reaction,
The half cell reactions are as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since mercury has positive electrode potential then copper so reduction occurs at mercury electrode and oxidation occurs at copper electrode.
The formula for cell potential is as follows:
Where,
Substitute
Standard cell potential for
Since for redox reaction to be spontaneous,
(c)
Interpretation:
Standard cell potential for the overall reaction below should be calculated and whether the reaction is spontaneous or non spontaneous should be identified.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(c)

Answer to Problem 13SSC
Standard cell potential for
Since for redox reaction to be spontaneous,
spontaneous.
Explanation of Solution
For the overall reaction,
The half cell reactions are as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since
The formula for cell potential is as follows:
Where,
Substitute
Standard cell potential for
Since for redox reaction to be spontaneous,
is spontaneous.
Chapter 20 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Chemistry: Structure and Properties (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Introductory Chemistry (6th Edition)
Biology: Life on Earth (11th Edition)
The Cosmic Perspective (8th Edition)
- 0+ aleksog/x/lsl.exe/1ou-lgNgkr7j8P3H-IQs pBaHhviTCeeBZbufuBYTOHz7m7D3ZStEPTBSB3u9bsp3Da pl19qomOXLhvWbH9wmXW5zm O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 Gab The temperature on a sample of pure X held at 0.75 atm and -229. °C is increased until the sample sublimes. The temperature is then held constant and the pressure is decreased by 0.50 atm. On the phase diagram below draw a path that shows this set of changes. F3 pressure (atm) 0- 0 200 Explanation temperature (K) Check F4 F5 ☀+ Q Search Chill Will an 9 ENG F6 F7 F8 F9 8 Delete F10 F11 F12 Insert PrtSc 114 d Ararrow_forwardx + LEKS: Using a phase diagram a X n/alekscgi/x/lsl.exe/10_u-IgNsikr7j8P3jH-IQs_pBan HhvlTCeeBZbufu BYTI0Hz7m7D3ZcHYUt80XL-5alyVpw ○ States of Matter Using a phase diagram to find a phase transition temperature or pressure Use the phase diagram of Substance X below to find the melting point of X when the pressure above the solid is 1.1 atm. pressure (atm) 16 08- solid liquid- 0 200 400 gas 600 temperature (K) Note: your answer must be within 25 °C of the exact answer to be graded correct. × 5arrow_forwardS: Using a phase diagram leksogi/x/sl.exe/1ou-IgNs kr 7j8P3jH-IQs_pBan HhvTCeeBZbufuBYTI0Hz7m7D3ZdHYU+80XL-5alyVp O States of Matter Using a phase diagram to find a phase transition temperature or pressure se the phase diagram of Substance X below to find the boiling point of X when the pressure on the liquid is 1.6 atm. pressure (atm) 32- 16- solid liquid 0. gas 100 200 temperature (K) 300 Note: your answer must be within 12.5 °C of the exact answer to be graded correct. 10 Explanation Check § Q Search J 2025 McGraw Hill LLC. All Rights Researrow_forward
- 151.2 254.8 85.9 199.6 241.4 87.6 242.5 186.4 155.8 257.1 242.9 253.3 256.0 216.6 108.7 239.0 149.7 236.4 152.1 222.7 148.7 278.2 268.7 234.4 262.7 283.2 143.6 QUESTION: Using this group of data on salt reduced tomato sauce concentration readings answer the following questions: 1. 95% Cl Confidence Interval (mmol/L) 2. [Na+] (mg/100 mL) 3. 95% Na+ Confidence Interval (mg/100 mL)arrow_forwardResults Search Results Best Free Coursehero Unloc xb Success Confirmation of Q x O Google Pas alekscgi/x/lsl.exe/1o_u-IgNslkr 7j8P3jH-IQs_pBanHhvlTCeeBZbufu BYTI0Hz7m7D3ZcHYUt80XL-5alyVpwDXM TEZayFYCavJ17dZtpxbFD0Qggd1J O States of Matter Using a phase diagram to find a phase transition temperature or pressure Gabr 3/5 he pressure above a pure sample of solid Substance X at 101. °C is lowered. At what pressure will the sample sublime? Use the phase diagram of X below to nd your answer. pressure (atm) 24- 12 solid liquid gas 200 400 temperature (K) 600 ote: your answer must be within 0.15 atm of the exact answer to be graded correct. atm Thanation Check © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center I Q Search L³ ملةarrow_forward301.7 348.9 193.7 308.6 339.5 160.6 337.7 464.7 223.5 370.5 326.6 327.5 336.1 317.9 203.8 329.8 221.9 331.7 211.7 309.6 223.4 353.7 334.6 305.6 340.0 304.3 244.7 QUESTION: Using this group of data on regular tomato sauce concentration readings answer the following questions: 1. 95% Cl Confidence Interval (mmol/L) 2. [Na+] (mg/100 mL) 3. 95% Na+ Confidence Interval (mg/100 mL)arrow_forward
- Search Results Search Results Best Free Coursehero Unlo x b Success Confirmation of Q aleks.com/alekscgi/x/sl.exe/10_u-lgNslkr7j8P3jH-IQs_pBan HhvlTCeeBZbufu BYTIOHz7m7D3ZcHYUt80XL-5alyVpwDXM TEZayFYCav States of Matter Using a phase diagram to find a phase transition temperature or pressure Use the phase diagram of Substance X below to find the temperature at which X turns to a gas, if the pressure above the solid is 3.7 atm. pressure (atm) 0. 32- 16 solid liquid gas 200 temperature (K) Note: your answer must be within 20 °C of the exact answer to be graded correct. Дос Xarrow_forwardConsider the reaction below to answer the following questions: Acetoacetic ester can be prepared by the Claisen self-condensation reaction of ethyl acetate. 1. NaOEt, EtOH H&C OCH CH3 2 H30 H3C CH2 OCH2CH3 A. Write the complete stepwise mechanism for this reaction. Show all electron flow with arrows and draw all intermediate structures. B. Ethyl acetate can be prepared from ethanol as the only organic starting material. Show all reagents and structures for all intermediates in this preparation. C. Give the structures of the ester precursors for the following Claisen condensation product and formulate the reaction. OEtarrow_forwardUse the phase diagram of Substance X below to find the temperature at which X turns to a gas, if the pressure above the solid is 3.7 atm. pressure (atm) 32 16 solid liquid gas 0 0 200 temperature (K) Note: your answer must be within 20 °C of the exact answer to be graded correct. Шос ☑ كarrow_forward
- Starting from bromoethane, how could you prepare the following compounds: a. Ethanol. b. Acetaldehyde f. Acetone. e. 2-Propanol i. Acetoacetic ester. d. 2-Bromoacetic acid. c. Acetic acid g. Acetamide. j. Ethylmalonate k. Gama ketoacid. h. Ethyl magnesium bromide.arrow_forward- The pressure above a pure sample of solid Substance X at 60. °C is raised. At what pressure will the sample melt? Use the phase diagram of X below to find your answer. pressure (atm) 02 0.4 solid Hliquid gas 0 0 200 400 600 temperature (K) Note: your answer must be within 0.025 atm of the exact answer to be graded correct. ☐ atmarrow_forward15. What is the order of decreasing reactivity towards nucleophilic acyl substitution for the carboxylic acid derivatives? (most reactive first) 0 O H3C COC CH3 H₂C C N(CH3)2 H3C C OCH3 A. a. I, 11, 111, b. I, III, IV, II C. II, IV, III, I ° (CH3)2CH C OCH3 IV d. II, I, III, IV B. R COCR 0 0 0 13= RC NH2 RC OR RC CI === IV a. I, III, II, IV b. II, III, I, IV C. III, II, I, IV d. IV, I, III, IIarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





