
(a)
Interpretation:
Standard cell potential for the overall reaction below should be calculated and whether the reaction is spontaneous or non spontaneous should be identified.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An
(a)

Answer to Problem 13SSC
Standard cell potential for
Since for
Explanation of Solution
For the overall reaction,
The half cell reactions are as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since copper has positive electrode potential then aluminum so reduction occurs at copper electrode and oxidation occurs at aluminum electrode.
The formula for cell potential is as follows:
Where,
Substitute
Standard cell potential for
Since for redox reaction to be spontaneous,
(b)
Interpretation:
Standard cell potential for the overall reaction below should be calculated and whether the reaction is spontaneous or non spontaneous should be identified.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(b)

Answer to Problem 13SSC
Standard cell potential for
Since for redox reaction to be spontaneous,
Explanation of Solution
For the overall reaction,
The half cell reactions are as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since mercury has positive electrode potential then copper so reduction occurs at mercury electrode and oxidation occurs at copper electrode.
The formula for cell potential is as follows:
Where,
Substitute
Standard cell potential for
Since for redox reaction to be spontaneous,
(c)
Interpretation:
Standard cell potential for the overall reaction below should be calculated and whether the reaction is spontaneous or non spontaneous should be identified.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(c)

Answer to Problem 13SSC
Standard cell potential for
Since for redox reaction to be spontaneous,
spontaneous.
Explanation of Solution
For the overall reaction,
The half cell reactions are as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since
The formula for cell potential is as follows:
Where,
Substitute
Standard cell potential for
Since for redox reaction to be spontaneous,
is spontaneous.
Chapter 20 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Chemistry: Structure and Properties (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Introductory Chemistry (6th Edition)
Biology: Life on Earth (11th Edition)
The Cosmic Perspective (8th Edition)
- Identifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardAssign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





