
Interpretation:
The condition under which redox reaction can cause an
Concept introduction:
Redox reaction is a reaction in which one substance loses electrons, that is undergoes oxidation whereas another substance gains electrons, that is undergoes reduction. An example of such reaction is as follows:
These reactions are accompanied by release of some energy called chemical energy which can be transformed to electrical energy by a device known as galvanic cell or electrochemical cell.

Answer to Problem 10SSC
There are two conditions under which redox reaction can cause an electric current to flow through a wire which are as follows:
- The
oxidation and reduction reaction must take place in separate containers containing electrolyte, connected by a wire for current to flow. - Presence of salt bridge between the two electrolytic solutions for completion of circuit by flow of ions between solutions.
Explanation of Solution
A redox reaction can be employed to produce electrical energy or current from chemical energy. An example of such reaction is as follows:
Above reaction can also be represented as follows:
This reaction can also be split into two half reactions as follow:
If oxidation half reaction and reduction half reaction occurs in separate beakers then, For redox reaction to cause current flow it is necessary that electron given out by zinc metal in one beaker to be gained by copper ions in other beaker. For this to happen Zinc metal rod is placed in zinc sulfate solution in one beaker and copper metal rod is placed in copper sulfate solution. Then the two solutions are connected by a wire and a salt bridge.
Salt bridge helps in mainly two things:
- To complete the electrical circuit by allowing the ions to flow from one solution to the other without mixing the two solutions.
- To maintain the electrical neutrality of the solutions in the two half cells.
Therefore, there are two conditions under which redox reaction can cause an electric current to flow through a wire which are as follows:
- The oxidation and reduction reaction must take place in separate containers containing electrolyte, connected by a wire for current to flow.
- Presence of salt bridge between the two electrolytic solutions for completion of circuit by flow of ions between solutions.
There are two conditions under which redox reaction can cause an electric current to flow through a wire which are as follows:
- The oxidation and reduction reaction must take place in separate containers containing electrolyte, connected by a wire for current to flow.
- Presence of salt bridge between the two electrolytic solutions for completion of circuit by flow of ions between solutions.
Chapter 20 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Additional Science Textbook Solutions
Campbell Biology (11th Edition)
Human Anatomy & Physiology (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Microbiology: An Introduction
Chemistry: Structure and Properties (2nd Edition)
Biology: Life on Earth (11th Edition)
- Name the molecules & Identify any chiral center CH3CH2CH2CHCH₂CH₂CH₂CH₂ OH CH₂CHCH2CH3 Br CH3 CH3CHCH2CHCH2CH3 CH3arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forward
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





