
(a)
Interpretation: Standard enthalpy of the reaction and change in standard entropy of the given reaction are to be determined and the temperature at which the change in standard Gibb’s energy is zero, is to be calculated.
Concept introduction: The standard enthalpy of the reaction is calculated by the formula,
The change in standard Gipp’s free energy of the reaction is calculated as,
To determine: Standard enthalpy of the reaction and change in standard entropy of the given reaction.
(a)

Answer to Problem 87CWP
Standard enthalpy of the reaction and change in standard entropy of the given reaction is
Explanation of Solution
Hydrogen gas is produced by reacting graphite with water.
The standard enthalpy of formation of
The standard enthalpy of formation of
The standard enthalpy of formation of
The standard enthalpy of the reaction is calculated by the formula,
Therefore, the above equation becomes,
Substitute the value of
Therefore, the standard enthalpy of the reaction is
The standard entropy of
The standard entropy of
The standard entropy of
The standard entropy of
The standard entropy change of the reaction is calculated by the formula,
Therefore, the above equation becomes,
Substitute the value of
Therefore, the standard entropy change of the reaction is
(b)
Interpretation: Standard enthalpy of the reaction and change in standard entropy of the given reaction are to be determined and the temperature at which the change in standard Gibb’s energy is zero, is to be calculated.
Concept introduction: The standard enthalpy of the reaction is calculated by the formula,
The change in standard Gipp’s free energy of the reaction is calculated as,
To determine: The temperature at which the change in standard Gipp’s energy of the given reaction is zero.
(b)

Answer to Problem 87CWP
The temperature at which the change in standard Gipp’s energy of the given reaction is zero is
Explanation of Solution
Given
The change in standard Gipp’s energy of the given reaction is zero.
Standard enthalpy of the reaction and change in standard entropy of the given reaction is
The change in standard Gipp’s free energy of the reaction is calculated as,
Substitute the value of
Therefore, the temperature at which the change in standard Gipp’s energy of the given reaction is zero is
Want to see more full solutions like this?
Chapter 20 Solutions
Chemistry with Access Code, Hybrid Edition
- Steps and explanations pleasearrow_forwardUse diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward
- Match the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forwardCan you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward
- 2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forwardconsider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





