Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 7P
To determine
The variation in wavelength of radio signal due to the orbital motion of distance planet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If you detected radio signals with an average wavelength of 68 cm and suspected that they came from a civilization on a distant Earth-like exoplanet, roughly how much of a change in wavelength (in cm) should you expect to detect as a result of the orbital motion of the distant exoplanet? (Hint: Use the Doppler shift formula.) (Note: Earth's orbital velocity is 30 km/s.)
If you detected radio signals with an average wavelength of 37 cm and suspected that they came from a civilization on a distant Earth-like exoplanet, roughly how much of a change in wavelength (in cm) should you expect to
detect as a result of the orbital motion of the distant exoplanet? (Hint: Use the Doppler shift formula.) (Note: Earth's orbital velocity is 30 km/s.)
cm
When Mars is 90 million km (9 x 10^10 m) from Earth, a) How long would it take for a radio wave from a video camera mounted on the back of a Mars Rover to tell ground control on earth that the Rover is about to go over a cliff? b) How long would it take for a radio signal from Earth to reach the Rover saying "STOP". c) Why do our Mars Rovers have to be "intelligent" enough to figure out how to deal with obstacles themselves?
Chapter 20 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 20 - If life is based on information, what is that...Ch. 20 - How does the DNA molecule produce a copy of...Ch. 20 - What would happen to a life-form if the genetic...Ch. 20 - What would happen to a life-form if the...Ch. 20 - Give an example of natural selection acting on new...Ch. 20 - Prob. 6RQCh. 20 - Why do scientists generality think that liquid...Ch. 20 - Prob. 8RQCh. 20 - What is the significance of the Miller-Urey...Ch. 20 - Prob. 10RQ
Ch. 20 - Prob. 11RQCh. 20 - Why is it reasonable to suspect that travel...Ch. 20 - How does the stability of technological...Ch. 20 - Prob. 14RQCh. 20 - Prob. 15RQCh. 20 - Prob. 16RQCh. 20 - How Do We know? Why are scientists confident that...Ch. 20 - Do you expect that hypothetical alien recipients...Ch. 20 - Prob. 2DQCh. 20 - Prob. 3DQCh. 20 - A single human cell encloses about 1.5 m of DNA,...Ch. 20 - If you represent Earth’s history by a line 1 m...Ch. 20 - Prob. 3PCh. 20 - If a star must remain on the main sequence for at...Ch. 20 - Prob. 5PCh. 20 - Prob. 6PCh. 20 - Prob. 7PCh. 20 - Calculate the numb of communicative civilizations...Ch. 20 - The star cluster shown in the image in Figure UN...Ch. 20 - Prob. 2LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Think of our Milky Way Galaxy as a flat circular disk of diameter 100,000 light-years. Suppose we are one of 1000 civilizations, randomly distributed through the disk, interested in communicating via radio waves. How far away in light years would the nearest such civilization be from us on average? Show your working. (Hint: Begin by calculating the area of the disk. Find the area of one of a 1,000 squares. Consider the separation of the centres of two adjacent squares.)arrow_forwardIn a globular cluster, astronomers (someday) discover a star with the same mass as our Sun, but consisting entirely of hydrogen and helium. Is this star a good place to point our SETI antennas and search for radio signals from an advanced civilization? Group of answer choices No, because such a star (and any planets around it) would not have the heavier elements (carbon, nitrogen, oxygen, etc.) that we believe are necessary to start life as we know it. Yes, because globular clusters are among the closest star clusters to us, so that they would be easy to search for radio signals. Yes, because we have already found radio signals from another civilization living near a star in a globular cluster. No, because such a star would most likely not have a stable (main-sequence) stage that is long enough for a technological civilization to develop. Yes, because such a star is probably old and a technological civilization will have had a long time to evolve and develop there.arrow_forwardA radio broadcast left Earth in 1911. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.20. How many possible planets with life could have heard this signal?arrow_forward
- Suppose a human generation is defined as the average time from birth to childbearing, which is about 20 years long. How many generations have passed in the 200,000 years during which anatomically modern humans have existed?arrow_forwardIf you represent Earths history by a line that is 1 m long, how long a segment would represent the 400 million years since life first moved onto the land? How long a segment would represent the 4-millionyear history of humanoid life?arrow_forwardConsider Figure 25-8. What is the ratio of the length of time since the origin of fish to the time since the origin of mammals? What does this value indicate?arrow_forward
- Why are upper-main-sequence (high-luminosity) host stars unlikely sites for intelligent civilizations?arrow_forwardTutorial A radio broadcast left Earth in 1923. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.40. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1923, distance in light years = time since broadcast left Earth. d = tnow - broadcast d = 97 97 light years Part 2 of 3 Since the radio signal travels in all directions, it expanded as a sphere with a radius equal to the distance it has traveled so far. To determine the number of star systems this signal has reached, we need to determine the volume of that sphere. V, = Vb…arrow_forwardTutorial A radio broadcast left Earth in 1925. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.30 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.85. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1925, distance in light years = time since broadcast left Earth. d = tnow - tbroadcast d = light years Submit Skip (you cannot come back)arrow_forward
- asap pleasearrow_forwardThe Apollo program (not the lunar missions with astronauts) being conducted at the Apache Point Observatory uses a 3.5 - m telescope to direct lasers at retro-reflectors left on the Moon by the Apollo astronauts. the Moon is 384, 472 km away approximately how long do the operators need to wait to see the laser light return to Earth? (Hint: The speed of light is 300,000 km/s.]arrow_forwards of el netic sources according to their frequencies by O Slide 1 S Assoc Pie x Od Radio freque 2 O Effects of X O PowerPoi x O PestisitlernX S Pesti CT X O Slide 1 ekampusankera.edu.tr/mod/quiz/attempt.php?attempt 162602&cmid 157735 sayfa > Derslerim > [517802] (SHUE1001-A) THE EFFECTS OF ENVIROMENTAL AND INDUSTRIAL POLLUTION ON HUMAN HEALTH> Genel > THE EFFE 曲 Site ana sayfası Benim Sayfam Takvim Rozetler alan süre 0:49:33 Soru 1 Which of the following is not classes Henüz cevaplanmadı the European Commission? GIZ 300 üzerinden şaretlenmiş O a. Extremely low frequencies P Soruyu işaretle O b Intermediate frequencies O. Static field O e Mobile field Seçimimi temizle Sonraki sayfa PHILIPS Samsung Quad Camera Shot with my Galaxy A21s ARG 0290942 NARG. RGIZ GULIYEY 20290942 NARGIZ GULY ARGIZ GULIYE 20290942 NARGIZ GULarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY