Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 5P
To determine
The number of suns like stars included in 100 light years of the earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)
(Astronomy)
White Dwarf Size I.
The density of Sirius B is 2×106 g/cm3 and its mass is 1.95×1030 kg. What is the radius of the white dwarf in km? (Hint: Density = mass/volume, and the volume of a sphere is 4/3πr3)
Please round your answer to two significant digits.
Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of
the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in
m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)
Question 4 of 7
A Moving to another question will save this response.
1 6:59
&
backs
Chapter 20 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 20 - If life is based on information, what is that...Ch. 20 - How does the DNA molecule produce a copy of...Ch. 20 - What would happen to a life-form if the genetic...Ch. 20 - What would happen to a life-form if the...Ch. 20 - Give an example of natural selection acting on new...Ch. 20 - Prob. 6RQCh. 20 - Why do scientists generality think that liquid...Ch. 20 - Prob. 8RQCh. 20 - What is the significance of the Miller-Urey...Ch. 20 - Prob. 10RQ
Ch. 20 - Prob. 11RQCh. 20 - Why is it reasonable to suspect that travel...Ch. 20 - How does the stability of technological...Ch. 20 - Prob. 14RQCh. 20 - Prob. 15RQCh. 20 - Prob. 16RQCh. 20 - How Do We know? Why are scientists confident that...Ch. 20 - Do you expect that hypothetical alien recipients...Ch. 20 - Prob. 2DQCh. 20 - Prob. 3DQCh. 20 - A single human cell encloses about 1.5 m of DNA,...Ch. 20 - If you represent Earth’s history by a line 1 m...Ch. 20 - Prob. 3PCh. 20 - If a star must remain on the main sequence for at...Ch. 20 - Prob. 5PCh. 20 - Prob. 6PCh. 20 - Prob. 7PCh. 20 - Calculate the numb of communicative civilizations...Ch. 20 - The star cluster shown in the image in Figure UN...Ch. 20 - Prob. 2LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the mass of a star having a diameter of 6E5 km and an average density of 1.5 g/cm3. Express answer in scientific notation.arrow_forwardWhite Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a 4 sphere is Tr.) 3 km Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size? I Table A-10 I Properties of the Planets ORBITAL PROPERTIES Semimajor Axis (a) Orbital Period (P) Average Orbital Velocity (km/s) Orbital Inclination Planet (AU) (106 km) (v) (days) Eccentricity to Ecliptic Mercury 0.387 57.9 0.241 88.0 47.9 0.206 7.0° Venus 0.723 108 0.615 224.7 35.0 0.007 3.4° Earth 1.00 150 1.00 365.3 29.8 0.017 Mars 1.52 228 1.88 687.0 24.1 0.093 1.8° Jupiter 5.20 779 11.9 4332 13.1 0.049 1.30 Saturn 9.58 1433 29.5 10,759 9.7 0.056 2.5° 30,799 60,190 Uranus 19.23 2877 84.3 6.8 0.044 0.8° Neptune * By definition. 30.10 4503 164.8 5.4 0.011 1.8° PHYSICAL PROPERTIES (Earth = e)…arrow_forwardPhysics written by hand.arrow_forward
- Most stars (Main sequence) generate light through the same mechanism. Because of this, there is an empirical relation between their mass, M, and their Luminosity, L. This relation could be written in the form L/Lsun = (M/Msun, This relation is shown in the log-log diagram below. Find the value of a and round it to the nearest integer. 10 104 102 10-2 10-4 0.1 1.0 2.0 0.2 0.5 5.0 10.0 20.0 Mam (solar masses) Luminosty (solar units)arrow_forwardYou measure a star to have a parallax angle of 0.12 arc-seconds What is the distance to this star in parsecs? 8.33 Hint: d = 1/p What is the parallax angle of a different star that is twice as far away as the star from the previous problems? [answer in arc-seconds without including the unit]arrow_forwardThe giant star Betelgeuse has an angular diameter as observed from Earth of about 0.05 arc seconds. If the star is 600 light years away from us, what is the physical diameter of the star in km? Compare this to the sun’s diameter of 1.4x10^6 km. The sun is about 1.6 x 10^(-5) light years from Earth.arrow_forward
- The Algol binary system consists of a 3.7 Msun star and a 0.8 Msun star with an orbital period of 2.87 days. Using Newton’s version of Kepler’s Third Law, calculate the distance, a, between the two stars. Compare that to the size of Betelgeuse (you’ll need to look that up). Newton’s Version of Kepler’s Law: (M1 + M2) P2 = (4p2 /G) a3 Rearrange the equation to solve for a. Pi, p, is equal to 3.14. IMPORTANT NOTE: Google the value of G (the Universal Gravitational Constant) or look it up in your text. NOTICE THE UNITS. You must convert every distance and time in your equation to the same units, otherwise, you’ll get an incorrect answer. That means you must convert distances to meters, solar masses to kilograms, and time to seconds. When you compare your value to the size of Betelgeuse, it will also help that they are in the same units.arrow_forwardhelpparrow_forwardUsing the center-of-mass equations or the Center of Mass Calculator (under Binary-Star Basics, above), you will investigate a specific binary-star system. Assume that Star 1 has m₁ = 3.4 solar masses, Star 2 has m₂ = 1.4 solar masses, and the total separation of the two (R) is 52 AU. (One AU is Earth's average distance from the Sun.) (a)What is the distance, d₁, (in AU) from Star 1 to the center of mass? AU (b)What is the distance, d2, (in AU) from Star 2 to the center of mass? AUarrow_forward
- Given that a pair of stars are found to be orbiting each other with a period of 11.86 [yrs] and a separation of 5.2 [AU], what is the binary star system's total mass (i.e.- M1+M2) expressed in units of our Sun's mass? a) 61.7 b) 39.5 c) .0162 d) 1 e) 1.0 x 10^30arrow_forwardA star has a radius of 2.6 R⊙, and a temperature of 9,758 K. What is the luminosity of this star (answer in solar luminosity units L⊙). [HINT: the temperature of the Sun is about 5800 K]arrow_forwardSuppose a star has a luminosity of 7.0x1026 watts and an apparent brightness of 4.0x10-12 watt/m?. How far away is it? Give your answer in both kilometers and light-years.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning