Horizons: Exploring the Universe (MindTap Course List)
Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 20, Problem 2LTL
To determine

To Discuss:

Would you look among disk stars, or halo stars, if you could search for life in the galaxy shown in the image?

Blurred answer
Students have asked these similar questions
In a globular cluster, astronomers (someday) discover a star with the same mass as our Sun, but consisting entirely of hydrogen and helium. Is this star a good place to point our SETI antennas and search for radio signals from an advanced civilization? Group of answer choices   No, because such a star (and any planets around it) would not have the heavier elements (carbon, nitrogen, oxygen, etc.) that we believe are necessary to start life as we know it.   Yes, because globular clusters are among the closest star clusters to us, so that they would be easy to search for radio signals.   Yes, because we have already found radio signals from another civilization living near a star in a globular cluster.   No, because such a star would most likely not have a stable (main-sequence) stage that is long enough for a technological civilization to develop.   Yes, because such a star is probably old and a technological civilization will have had a long time to evolve and develop there.
Tutorial A radio broadcast left Earth in 1923. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.40. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1923, distance in light years = time since broadcast left Earth. d = tnow - broadcast d = 97 97 light years Part 2 of 3 Since the radio signal travels in all directions, it expanded as a sphere with a radius equal to the distance it has traveled so far. To determine the number of star systems this signal has reached, we need to determine the volume of that sphere. V, = Vb…
Tutorial A radio broadcast left Earth in 1925. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.30 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.85. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1925, distance in light years = time since broadcast left Earth. d = tnow - tbroadcast d = light years Submit Skip (you cannot come back)
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY