Suppose a power plant delivers energy at 850 MW using steam turbines. The steam goes into the turbines superheated at 625 K and deposits its unused heat in river water at 285 K. Assume that the turbine operates as an ideal Carnot engine. ( a ) If the river’s flow rate is 34 m 3 /s, estimate the average temperature increase of the river water immediately downstream from the power plant. ( b ) What is the entropy increase per kilogram of the downstream river water in J/kg·K?
Suppose a power plant delivers energy at 850 MW using steam turbines. The steam goes into the turbines superheated at 625 K and deposits its unused heat in river water at 285 K. Assume that the turbine operates as an ideal Carnot engine. ( a ) If the river’s flow rate is 34 m 3 /s, estimate the average temperature increase of the river water immediately downstream from the power plant. ( b ) What is the entropy increase per kilogram of the downstream river water in J/kg·K?
Suppose a power plant delivers energy at 850 MW using steam turbines. The steam goes into the turbines superheated at 625 K and deposits its unused heat in river water at 285 K. Assume that the turbine operates as an ideal Carnot engine. (a) If the river’s flow rate is 34 m3/s, estimate the average temperature increase of the river water immediately downstream from the power plant. (b) What is the entropy increase per kilogram of the downstream river water in J/kg·K?
A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile.
(a) Find the maximum altitude reached by the rocket.
1445.46
Your response differs from the correct answer by more than 10%. Double check your calculations. m
(b) Find its total time of flight.
36.16
x
Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s
(c) Find its horizontal range.
1753.12
×
Your response differs from the correct answer by more than 10%. Double check your calculations. m
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY