21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 36QP
(a)
To determine
The distance between the sun and globular cluster.
(b)
To determine
The comparison between galaxy’s halo size and the size of visible disk.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure below shows the spectra of two galaxies A and B.
If you want to find a sizeable collection of Population Il stars in the Milky Way Galaxy, where
would be a good place to look?
A. near the Sun
B. in a globular cluster high above the Galaxy's disk
C. in the Orion Spur
D.on the outer surface of giant molecular clouds
E. in an open cluster, especially one with a lot of dust in and around it
As we discussed, clouds are made of a great many small drops. Really - a great many. Imagine a
liquid cloud that fills a volume of 1 km3. The clouds contains 100 drops per cubic centimeter; for
the sake of argument assume that each is 10 microns (micrometers) in radius.
A. How many drops does the cloud contain? Compare this to a big number - say, the number of
stars in the galaxy.
B. What mass of water does the cloud contain? Compare this to something big - elephants,
trucks, that sort of thing.
C. What fraction of the cloud volume is filled with condensed water? One way to approach this
is to compare the density of the suspended liquid water to the density of the surrounding air.
D. How many 1 mm drizzle drops could you make from all the cloud drops?
E. How much energy was released when this water condensed from vapor to liquid? If the
water condensed in 20 minutes (a reasonable lifetime for a small cloud), what was the
(energy per time)?
power
Chapter 20 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 20.1 - Prob. 20.1CYUCh. 20.2 - Prob. 20.2CYUCh. 20.3 - Prob. 20.3CYUCh. 20.4 - Prob. 20.4CYUCh. 20 - Prob. 1QPCh. 20 - Prob. 2QPCh. 20 - Prob. 3QPCh. 20 - Prob. 4QPCh. 20 - Prob. 5QPCh. 20 - Prob. 6QP
Ch. 20 - Prob. 7QPCh. 20 - Prob. 8QPCh. 20 - Prob. 9QPCh. 20 - Prob. 10QPCh. 20 - Prob. 11QPCh. 20 - Prob. 12QPCh. 20 - Prob. 13QPCh. 20 - Prob. 14QPCh. 20 - Prob. 15QPCh. 20 - Prob. 16QPCh. 20 - Prob. 17QPCh. 20 - Prob. 18QPCh. 20 - Prob. 19QPCh. 20 - Prob. 20QPCh. 20 - Prob. 21QPCh. 20 - Prob. 22QPCh. 20 - Prob. 23QPCh. 20 - Prob. 24QPCh. 20 - Prob. 25QPCh. 20 - Prob. 26QPCh. 20 - Prob. 27QPCh. 20 - Prob. 28QPCh. 20 - Prob. 29QPCh. 20 - Prob. 30QPCh. 20 - Prob. 31QPCh. 20 - Prob. 32QPCh. 20 - Prob. 33QPCh. 20 - Prob. 34QPCh. 20 - Prob. 35QPCh. 20 - Prob. 36QPCh. 20 - Prob. 37QPCh. 20 - Prob. 38QPCh. 20 - Prob. 39QPCh. 20 - Prob. 40QPCh. 20 - Prob. 41QPCh. 20 - Prob. 42QPCh. 20 - Prob. 43QPCh. 20 - Prob. 44QPCh. 20 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the following five kinds of objects: open cluster, giant molecular cloud, globular cluster, group of O and B stars, and planetary nebulae. A. Which occur only in spiral arms? B. Which occur only in the parts of the Galaxy other than the spiral arms? C. Which are thought to be very young? D. Which are thought to be very old? E. Which have the hottest stars?arrow_forwardThe Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass. 250 km s-1. Using Kepler's 3rd Law,arrow_forwardHow astronomers determine the distance of a galaxy? Explain.arrow_forward
- The Kormendy relation for ellipticals can be written as He = 20.2+ 3.0 log R. where R. is the half-light radius (in kpc) and 4e is the surface brightness (in magnitudes per square arc second) at R.. An elliptical galaxy obeying this relation will have a total luminosity Lo R for some index 7. What is the correct value of n? O a. n=-6/5 O b. n= 4/5 T23D Oc n= 16/5 O d. n cannot be determined with the information we have.arrow_forwardThe figure below shows the spectra of two galaxies A and B. Please can i get help with this questions below: 1. Which of these galaxies has ongoing star formation? How can you tell?2. One of these galaxies has Hubble type E3 while the other is SBb. Which is which? What does the 3 inE3 tell you about the galaxy? What does the SB in SBb tell you about the galaxy?3. What effects would dust have on the two spectra?4. Which galaxy would you expect to have more far-infrared emission? Explarrow_forwardA star at a distance of 50000 light years from the center of a galaxy has an orbital speed of 100 km/s around the galactic center. What is the total mass of the galaxy located at distances smaller than 50000 light years from the center? A. 7.6 ×1010 solar masses B. 4.2 ×1011 solar masses C. 3.5 ×1010 solar masses D. 1.4 ×1011 solar masses Is the answer C? M = (r x v^2) / G = 50000 x 9.46e15 x (100000^2) / 6.67e-11 / 2e30 (the Sun's mass) = 3.55e10 solar massesarrow_forward
- helparrow_forwardWhat is the name for the spherical cloud of thinly scattered stars and globular clusters that contain only about 2 percent as many stars as the disk of the galaxy and has very little gas and dust? a. the core b. the nuclear bulge c. the spiral arms d. the halo e. none of thesearrow_forwardA galaxy's rotation curve is a measure of the orbital speed of stars as a function of distance from the galaxy's centre. The fact that rotation curves are primarily flat at large galactocen- tric distances (vrot(r) ~ constant) is the most common example of why astronomer's believe dark matter exists. Let's work out why! Assuming that each star in a given galaxy has a circular orbit, we know that the accelera- tion due to gravity felt by each star is due to the mass enclosed within its orbital radius r and equal to v?/r. Here, ve is the circular orbit velocity of the star. (a) Show that the expected relationship between ve and r due to the stellar halo (p(r) xr-3.5) does not produce a flat rotation curve. (b) Show that a p(r) ∞ r¯² density profile successfully produces a flat ro- tation curve and must therefore be the general profile that dark matter follows in our galaxy.arrow_forward
- Globular clusters revolve around the Galaxy in highly elliptical orbits. Where would you expect the clusters to spend most of their time? (Think of Kepler’s laws.) At any given time, would you expect most globular clusters to be moving at high or low speeds with respect to the center of the Galaxy? Why? (If you would like to learn more about globular clusters, read Section 22.2 of the book, though it is not necessary to answer this question)arrow_forward5) The second image on the next page shows a UV image of a nearby galaxy (left) and an optical image of the same galaxy (right). Not counting the central core of the galaxy, where do the hottest stars tend to live? Again discounting the central core, is there a pattern to where the cooler stars tend to live? Explain your reasoning for both responsesarrow_forwardFigure 2 shows the "rotation curve" of NGC 2742. It plots the “radial velocity (V)" (how fast material is moving either toward or away from us) that is measured for objects at different distances (R = radius") from the center of the galaxy. The center of the galaxy is at 0 kpc (kiloparsecs) with a speed of 9 km/sec away from us. (These velocities have been corrected for the observed tilt of the galaxy and represent true orbital velocities of the stars and gas.) 200 100 U4779 -100 As you can see, one side of the galaxy is moving with a negative velocity (spinning toward us), while the other side has a positive velocity (spinning away from us). Using Newton's gravity equation, we will be able to determine the gravitational mass of the entire galaxy and how the mass varies versus distance from the galaxy's center. -200 -8 8 -4 Radius (kpc) Read the following text carefully and follow the instructions: Select five radii spaced evenly from 0-10 kpc across the galaxy. Your selections should…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning