21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 15QP
To determine
The concept that does not consider of a galactic habitable zone.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The first stars to form in our galaxy
a.
had circular orbits.
b.
had highly elliptical orbits.
c.
were population I stars.
d.
all had orbits in the same plane.
e.
formed the galactic clusters we see today.
Radio maps of our galaxy show spiral arms because
a.
the arms have larger Doppler shifts.
b.
the gas in the spiral arms is very hot.
c.
the dust in spiral arms is denser.
d.
the gas in spiral arms is denser.
e.
the stars in the spiral arms emit most of their energy at radio wavelengths.
Why are we unlikely to find Earth-like planets around halo stars in the Galaxy?
A. Halo stars formed in a different way from disk stars.
B. Planets around stars are known to be extremely rare.
C. Halo stars formed in an environment where there were few heavy elements to create rocky planets.
D. Halo stars do not have enough mass to hold onto planets.
Is the answer C? Since halo stars are formed early when the galaxy consisted of mainly hydrogen and helium, there are no heavier elements available to create Earth-like planets so just halo stars are formed?
Thanks!
Chapter 20 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 20.1 - Prob. 20.1CYUCh. 20.2 - Prob. 20.2CYUCh. 20.3 - Prob. 20.3CYUCh. 20.4 - Prob. 20.4CYUCh. 20 - Prob. 1QPCh. 20 - Prob. 2QPCh. 20 - Prob. 3QPCh. 20 - Prob. 4QPCh. 20 - Prob. 5QPCh. 20 - Prob. 6QP
Ch. 20 - Prob. 7QPCh. 20 - Prob. 8QPCh. 20 - Prob. 9QPCh. 20 - Prob. 10QPCh. 20 - Prob. 11QPCh. 20 - Prob. 12QPCh. 20 - Prob. 13QPCh. 20 - Prob. 14QPCh. 20 - Prob. 15QPCh. 20 - Prob. 16QPCh. 20 - Prob. 17QPCh. 20 - Prob. 18QPCh. 20 - Prob. 19QPCh. 20 - Prob. 20QPCh. 20 - Prob. 21QPCh. 20 - Prob. 22QPCh. 20 - Prob. 23QPCh. 20 - Prob. 24QPCh. 20 - Prob. 25QPCh. 20 - Prob. 26QPCh. 20 - Prob. 27QPCh. 20 - Prob. 28QPCh. 20 - Prob. 29QPCh. 20 - Prob. 30QPCh. 20 - Prob. 31QPCh. 20 - Prob. 32QPCh. 20 - Prob. 33QPCh. 20 - Prob. 34QPCh. 20 - Prob. 35QPCh. 20 - Prob. 36QPCh. 20 - Prob. 37QPCh. 20 - Prob. 38QPCh. 20 - Prob. 39QPCh. 20 - Prob. 40QPCh. 20 - Prob. 41QPCh. 20 - Prob. 42QPCh. 20 - Prob. 43QPCh. 20 - Prob. 44QPCh. 20 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Absorption lines produced by interstellar gas a. are wider than the lines from stars because the gas is hotter than most stars. b. are more narrow than the lines from stars because the gas has a lower pressure than stars. c. indicate that the interstellar medium contains dust. d. indicate that the interstellar medium is expanding away from the sun. e. indicate nothing; none of the above statements are true.arrow_forwardThe oldest open clusters are a. 3 to 4 billion years old. b. 6 to 7 billion years old. c. 9 to 10 billion years old. d. 12 to 13 billion years old. e. 16 to 17 billion years old.arrow_forwardHow is a habitable zone likely to change over time? a. get narrower b. move further from the star c. they aren't likely to changearrow_forward
- 2. Over several months an astronomer observes an exoplanet orbiting a distant star at a distance of 5.934 AU. Its orbit period was projected to be 3.875 years. Convert the orbit radius to meters and period to seconds. Use this information to calculate the mass M of the star in kg and solar mass units (Mo). Star Exoplanet Orbit radius (m) Orbit period (s) Star mass (kg) Star mass (Mo)arrow_forwardThe age of the Milky Way Galaxy has been estimated to be at least 13 billion years based on a. observations of globular clusters. b. observations of open clusters. c. 21-cm radiation from HI regions. d. the rotation curve of the galaxy. e. the energy produced by Sagittarius A*.arrow_forwardMeasured ages of globular clusters and a study of the time required for massive stars to build up the present abundance of heavy elements suggests that the universe is a. at least 20 billion years old. b. no more than 10 billion years old. c. about 14 billion years old. d. flat. e. closed.arrow_forward
- H5. A star with mass 1.05 M has a luminosity of 4.49 × 1026 W and effective temperature of 5700 K. It dims to 4.42 × 1026 W every 1.39 Earth days due to a transiting exoplanet. The duration of the transit reveals that the exoplanet orbits at a distance of 0.0617 AU. Based on this information, calculate the radius of the planet (expressed in Jupiter radii) and the minimum inclination of its orbit to our line of sight. Follow up observations of the star in part reveal that a spectral feature with a rest wavelength of 656 nm is redshifted by 1.41×10−3 nm with the same period as the observed transit. Assuming a circular orbit what can be inferred about the planet’s mass (expressed in Jupiter masses)?arrow_forwardRadio maps of the spiral arms of our galaxy a. reveal that our galaxy is a grand design spiral. b. map the location of hot O and B stars by the radio radiation they emit. c. reveal that the spiral arms are winding up and growing closer together. d. reveal that the sun is currently located in the center of a spiral arm. e. map the location of dense neutral hydrogen clouds.arrow_forward7. Why does a solar nebula flatten into a disk instead of a sphere, even though the gravity of a nebula pulls in all directions?arrow_forward
- Describe the Nebular Theory. Include A) what it is, B)what happened, and C) at least three lines of evidence to support it.arrow_forwardThe traditional theory of the formation of our galaxy CANNOT explain a. the existence of the disk of the galaxy. b. the fact that the oldest stars in the galaxy are not metal free. c. the spherical distribution of the globular clusters. d. the difference in metal abundance of the population I and II stars. e. the existence of the nuclear bulge.arrow_forwardThe theory that the collapse of a massive star’s iron core produces neutrinos was supported by a. the size and structure of the Crab nebula. b. laboratory measurements of the mass of the neutrino. c. the brightening of supernovae a few days after they are first visible. d. underground counts from solar neutrinos. e. the detection of neutrinos from the supernova of 1987.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY