21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 27QP
To determine
The Large Magellanic Cloud and Small Magellanic Cloud look like detached pieces of the Milky Way.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6-please see attached
I answer is not 100, I also tried 21. I need help! Thank you!
Which of the following statements best describes our galaxy, the Milky Way?
O A bulge dominated system, with little or no disk, approximately 27,000 light years across.
A disk 100,000 lightyears across filled with gas and stars, with a bulge of older stars in the galaxy centre.
A disk 27,000 light years across with a bulge of gas and newly formed stars in the galaxy centre.
O A spherical (elliptical) galaxy, 100,000 lightyears across, with no gas and no new stars.
Chapter 20 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 20.1 - Prob. 20.1CYUCh. 20.2 - Prob. 20.2CYUCh. 20.3 - Prob. 20.3CYUCh. 20.4 - Prob. 20.4CYUCh. 20 - Prob. 1QPCh. 20 - Prob. 2QPCh. 20 - Prob. 3QPCh. 20 - Prob. 4QPCh. 20 - Prob. 5QPCh. 20 - Prob. 6QP
Ch. 20 - Prob. 7QPCh. 20 - Prob. 8QPCh. 20 - Prob. 9QPCh. 20 - Prob. 10QPCh. 20 - Prob. 11QPCh. 20 - Prob. 12QPCh. 20 - Prob. 13QPCh. 20 - Prob. 14QPCh. 20 - Prob. 15QPCh. 20 - Prob. 16QPCh. 20 - Prob. 17QPCh. 20 - Prob. 18QPCh. 20 - Prob. 19QPCh. 20 - Prob. 20QPCh. 20 - Prob. 21QPCh. 20 - Prob. 22QPCh. 20 - Prob. 23QPCh. 20 - Prob. 24QPCh. 20 - Prob. 25QPCh. 20 - Prob. 26QPCh. 20 - Prob. 27QPCh. 20 - Prob. 28QPCh. 20 - Prob. 29QPCh. 20 - Prob. 30QPCh. 20 - Prob. 31QPCh. 20 - Prob. 32QPCh. 20 - Prob. 33QPCh. 20 - Prob. 34QPCh. 20 - Prob. 35QPCh. 20 - Prob. 36QPCh. 20 - Prob. 37QPCh. 20 - Prob. 38QPCh. 20 - Prob. 39QPCh. 20 - Prob. 40QPCh. 20 - Prob. 41QPCh. 20 - Prob. 42QPCh. 20 - Prob. 43QPCh. 20 - Prob. 44QPCh. 20 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A molecular cloud is about 1000 times denser than the average of the interstellar medium. Let’s compare this difference in densities to something more familiar. Air has a density of about 1 kg/m3, so something 1000 times denser than air would have a density of about 1000 kg/m3. How does this compare to the typical density of water? Of granite? (You can find figures for these densities on the internet.) Is the density difference between a molecular cloud and the interstellar medium larger or smaller than the density difference between air and water or granite?arrow_forwardStars form in the Milky Way at a rate of about 1 solar mass per year. At this rate, how long would it take for all the interstellar gas in the Milky Way to be turned into stars if there were no fresh gas coming in from outside? How does this compare to the estimated age of the universe, 14 billion years? What do you conclude from this?arrow_forwardAssume that dark matter is uniformly distributed throughout the Milky Way, not just in the outer halo but also throughout the bulge and in the disk, where the solar system lives. How much dark matter would you expect there to be inside the solar system? Would you expect that to be easily detectable? Hint: For the radius of the Milky Way’s dark matter halo, use R=300,000 light-years; for the solar system’s radius, use 100 AU; and start by calculating the ratio of the two volumes.arrow_forward
- Suppose three stars lie in the disk of the Galaxy at distances of 20,000 light-years, 25,000 light-years, and 30,000 light-years from the galactic center, and suppose that right now all three are lined up in such a way that it is possible to draw a straight line through them and on to the center of the Galaxy. How will the relative positions of these three stars change with time? Assume that their orbits are all circular and lie in the plane of the disk.arrow_forwardThe Milky Way galaxy has about 5 x 10⁹ solar masses of gas in total. If 13 solar masses of that gas is turned into stars each year, how many more years could the Milky Way keep up with such a star formation rate? years (Note for comparison that the age of the universe is about 13.5 billion years, which can be written 1.35e10 years. Also, the value given is in the ballpark of how much gas in the Milky Way is used to make new stars each year.)arrow_forwardThe very first “image" of a black hole, at the centre of galaxy M87, was recently taken by the Event Horizon Telescope (EHT). More accurately, EHT imaged radio emission from the disc of gas that orbits the black hole with a lack of emission from the centre being attributed to the black hole. This image was only possible because EHT is not a single radio telescope, but is in fact a network of telescopes from around the world that take advantage of something known as interferometry. Interferometry is a method for combining the light from multiple telescopes, which results in an image that could have been taken by a telescope that has a diameter equal to the distance between the telescopes referred to as the "“baseline"-rather than the size of each individual telescope. EHT in particular combines observations from several Very Long Baseline Interferometry (VLBI) stations in order to achieve a high angular resolution. (a) Given that the "baseline" of EHT is effectively the diameter of the…arrow_forward
- The very first "image" of a black hole, at the centre of galaxy M87, was recently taken by the Event Horizon Telescope (EHT). More accurately, EHT imaged radio emission from the disc of gas that orbits the black hole with a lack of emission from the centre being attributed to the black hole. This image was only possible because EHT is not a single radio telescope, but is in fact a network of telescopes from around the world that take advantage of something known as interferometry. Interferometry is a method for combining the light from multiple telescopes, which results in an image that could have been taken by a telescope that has a diameter equal to the distance between the telescopes-referred to as the “baseline"-rather than the size of each individual telescope. EHT in particular combines observations from several Very Long Baseline Interferometry (VLBI) stations in order to achieve a high angular resolution. (a) Given that the "baseline" of EHT is effectively the diameter of the…arrow_forwardThe Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass. 250 km s-1. Using Kepler's 3rd Law,arrow_forwardAs we discussed, clouds are made of a great many small drops. Really - a great many. Imagine a liquid cloud that fills a volume of 1 km3. The clouds contains 100 drops per cubic centimeter; for the sake of argument assume that each is 10 microns (micrometers) in radius. A. How many drops does the cloud contain? Compare this to a big number - say, the number of stars in the galaxy. B. What mass of water does the cloud contain? Compare this to something big - elephants, trucks, that sort of thing. C. What fraction of the cloud volume is filled with condensed water? One way to approach this is to compare the density of the suspended liquid water to the density of the surrounding air. D. How many 1 mm drizzle drops could you make from all the cloud drops? E. How much energy was released when this water condensed from vapor to liquid? If the water condensed in 20 minutes (a reasonable lifetime for a small cloud), what was the (energy per time)? powerarrow_forward
- The telescope and CCD camera described in question 2 are scheduled to observe the star cluster M67 at 22:00 GMT on 02/03/2022. Using Stellarium, determine whether or not this is a good time to observe the cluster. Choose the answer below that best matches your conclusions. a. No - the cluster is not visible from London at this date and time. b. The cluster is visible but the full Moon is close by and so will interfere with the observations. c. The cluster is visible but is very close to the horizon and so will be difficult to observe. d. The cluster M67 is never visible in the sky from London so we should abandon any plans to observe it. e. Yes this is a good time to observe the cluster as it is well placed in the sky for viewing and the moon is not visible.arrow_forwardThe figure below shows the spectra of two galaxies A and B.arrow_forwardSuppose that stars were born at random times over the last 1010 years. The rate of star formation is simply the number of stars divided by 1010 years. The fraction of stars with detected extrasolar planets is at least 11 %. The rate of star formation can be multiplied by this fraction to find the rate planet formation. How often (in years) does a planetary system form in our galaxy? Assume the Milky Way contains 3 × 1011 stars.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning