21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 28QP
To determine
The origin of the Milky Way’s satellite galaxies, the fate of most of the Milky Way’s satellite galaxies and the Milky Way’s satellite galaxies so difficult to detect.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity.
Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the
galactic centre, are observed to orbit at a speed vrot
determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of
the Solar mass.
250 km s-1. Using Kepler's 3rd Law,
What are the three main types of galaxies, and what are the peculiarities? What type is the Milky Way?
Choose the statement that is NOT true of a galaxy.
O Galaxies take different shapes depending on how the stars are distributed and oriented.
O Agreat island of stars held together by gravity.
All galaxies are basically of the same shape and consist mainly of a discs and a halos.
All the stars in a galary orbit a common center
Chapter 20 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 20.1 - Prob. 20.1CYUCh. 20.2 - Prob. 20.2CYUCh. 20.3 - Prob. 20.3CYUCh. 20.4 - Prob. 20.4CYUCh. 20 - Prob. 1QPCh. 20 - Prob. 2QPCh. 20 - Prob. 3QPCh. 20 - Prob. 4QPCh. 20 - Prob. 5QPCh. 20 - Prob. 6QP
Ch. 20 - Prob. 7QPCh. 20 - Prob. 8QPCh. 20 - Prob. 9QPCh. 20 - Prob. 10QPCh. 20 - Prob. 11QPCh. 20 - Prob. 12QPCh. 20 - Prob. 13QPCh. 20 - Prob. 14QPCh. 20 - Prob. 15QPCh. 20 - Prob. 16QPCh. 20 - Prob. 17QPCh. 20 - Prob. 18QPCh. 20 - Prob. 19QPCh. 20 - Prob. 20QPCh. 20 - Prob. 21QPCh. 20 - Prob. 22QPCh. 20 - Prob. 23QPCh. 20 - Prob. 24QPCh. 20 - Prob. 25QPCh. 20 - Prob. 26QPCh. 20 - Prob. 27QPCh. 20 - Prob. 28QPCh. 20 - Prob. 29QPCh. 20 - Prob. 30QPCh. 20 - Prob. 31QPCh. 20 - Prob. 32QPCh. 20 - Prob. 33QPCh. 20 - Prob. 34QPCh. 20 - Prob. 35QPCh. 20 - Prob. 36QPCh. 20 - Prob. 37QPCh. 20 - Prob. 38QPCh. 20 - Prob. 39QPCh. 20 - Prob. 40QPCh. 20 - Prob. 41QPCh. 20 - Prob. 42QPCh. 20 - Prob. 43QPCh. 20 - Prob. 44QPCh. 20 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What evidence contradicts the top-down hypothesis for the origin of our Galaxy?arrow_forwardSuppose three stars lie in the disk of the Galaxy at distances of 20,000 light-years, 25,000 light-years, and 30,000 light-years from the galactic center, and suppose that right now all three are lined up in such a way that it is possible to draw a straight line through them and on to the center of the Galaxy. How will the relative positions of these three stars change with time? Assume that their orbits are all circular and lie in the plane of the disk.arrow_forwardThe figure below shows the spectra of two galaxies A and B.arrow_forward
- I answer is not 100, I also tried 21. I need help! Thank you!arrow_forwardWhich of the following statements best describes our galaxy, the Milky Way? O A bulge dominated system, with little or no disk, approximately 27,000 light years across. A disk 100,000 lightyears across filled with gas and stars, with a bulge of older stars in the galaxy centre. A disk 27,000 light years across with a bulge of gas and newly formed stars in the galaxy centre. O A spherical (elliptical) galaxy, 100,000 lightyears across, with no gas and no new stars.arrow_forwardHow astronomers determine the distance of a galaxy? Explain.arrow_forward
- A given star orbits the center of its galaxy at an average speed of v_star, at a distance of r_star from the center. The galaxy has 2 spiral arms, and the arms themselves orbit slower than the star -- at the same radius, they orbit at a speed of v_arm (in the same direction as the star). The galaxy's age is t_gal. In the history of this galaxy, how many times did this star cross through a spiral arm? Values: v_star = 200 km/s, r_star = 9 kpc, v_arms = 46 km/s, t_gal = 4 Gyrarrow_forwardSuppose you have obtained spectra of several galaxies and have measured the observed wavelength of the H-Alpha line (rest wavelength = 656.3 nm) to be Galaxy 1: 658.1 nm. Galaxy 2: 667.1 nm. Galaxy 3: 677.6 nm. Calculate the radial velocity of each of these galaxies.arrow_forwardAmong the globular clusters orbiting a distant galaxy, one is moving at 534 km/s and is located 14 kpc from the center of the galaxy. Assuming the globular cluster is located outside most of the mass of the galaxy, what is the mass of the galaxy? Convert your answer to solar masses. (Hint: Use the formula for circular velocity, Vc = GM r ; make sure you convert relevant quantities to units of meters, kilograms, and seconds. Note: 1 pc = 3.1 ✕ 1016 m.)arrow_forward
- A galaxy's rotation curve is a measure of the orbital speed of stars as a function of distance from the galaxy's centre. The fact that rotation curves are primarily flat at large galactocen- tric distances (vrot(r) ~ constant) is the most common example of why astronomer's believe dark matter exists. Let's work out why! Assuming that each star in a given galaxy has a circular orbit, we know that the accelera- tion due to gravity felt by each star is due to the mass enclosed within its orbital radius r and equal to v?/r. Here, ve is the circular orbit velocity of the star. (a) Show that the expected relationship between ve and r due to the stellar halo (p(r) xr-3.5) does not produce a flat rotation curve. (b) Show that a p(r) ∞ r¯² density profile successfully produces a flat ro- tation curve and must therefore be the general profile that dark matter follows in our galaxy.arrow_forwardIndicate whether the following statements are true or false. (Select T-True, F-False. If the first is T and the rest F, enter TFFFFF). A) If we find an O type star in our galaxy, it must be in the disk. B) The nearest large spiral Galaxy, similar in size to the Milky Way, is the Andromeda Galaxy (M31). It is located about 2 million light years from Earth. C) The disk of the Milky Way galaxy is about 100,000 light years in diameter. D) On very large scales, matter in the Universe is distributed in clumps and voids. E) Distances to most stars in the Milky Way are measured by parallax. F) RR Lyrae and Cepheid variable stars are used to measure the distance to nearby galaxies.arrow_forwardThe globular clusters revolve around the Galaxy in highly elliptical orbits. Where would you expect the clusters to spend most of their time? (Think of Kepler’s laws.) At any given time, would you expect most globular clusters to be moving at high or low speeds with respect to the center of the Galaxy? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax