
Concept explainers
(a)
The mass of the ice that melts.
(a)

Answer to Problem 20.76AP
The mass of the ice that melts is
Explanation of Solution
Given info: The mass of the copper block is
Write the expression for the change in kinetic energy of the block.
Here,
Substitute
Thus, the change in kinetic energy of the block is
Write the expression for the change in internal energy.
Here,
Substitute
Write the expression for the conservation of energy for the isolated copper ice system.
Here,
Substitute
Conclusion:
Therefore, the mass of the ice that melts is
(b)
The input energy, the change in internal energy and the change in mechanical energy for the block-ice system.
(b)

Answer to Problem 20.76AP
The input energy is
Explanation of Solution
Given info: The mass of the copper block is
The temperature of the air is
Write the expression for the change in mechanical energy of the block.
From part (a), change in kinetic energy of the block is
Substitute
Conclusion:
Therefore, the input energy is
(c)
The input energy and the change in internal energy for the ice as a system.
(c)

Answer to Problem 20.76AP
The input energy is
Explanation of Solution
Given info: The mass of the copper block is
The temperature of the ice is
From equation (1), the expression for the change in internal energy.
From part (a), the mass of the ice that melts is
Substitute
Conclusion:
Therefore, the input energy is
(d)
The mass of the ice that melts.
(d)

Answer to Problem 20.76AP
The mass of the ice that melts is
Explanation of Solution
Given info: The mass of the copper block is
Write the expression for the change in kinetic energy of the block.
Here,
Substitute
Thus, the change in kinetic energy of the block is
Write the expression for the change in internal energy.
Here,
Substitute
Write the expression for the conservation of energy for the isolated copper ice system.
Here,
Substitute
Conclusion:
Therefore, the mass of the ice that melts is
(e)
The input energy and the change in internal energy for the block of ice as a system and
(e)

Answer to Problem 20.76AP
The input energy is
Explanation of Solution
Given info: The mass of the copper block is
The temperature of the block of the ice is
From equation (1), the expression for the change in internal energy.
From part (a), the mass of the ice that melts is
Substitute
Thus, the change in internal energy for the block of ice as a system is
Write the expression for the change in mechanical energy for the block-ice system.
From part (a), change in kinetic energy of the block is
Substitute
Conclusion:
Therefore, the input energy is
(f)
The input energy and the change in internal energy for the metal sheet as a system.
(f)

Answer to Problem 20.76AP
The input energy for the metal sheet as a system is
Explanation of Solution
Given info: The mass of the copper block is
The temperature of the metal sheet is
Conclusion:
Therefore, the input energy for the metal sheet as a system is
(g)
The change in temperature of both objects.
(g)

Answer to Problem 20.76AP
The change in temperature of both objects is
Explanation of Solution
Given info: The mass of the copper slab is
Write the expression for the change in kinetic energy of the copper slab.
Here,
Substitute
Thus, the change in kinetic energy of the copper slab is
Write the expression for the change in internal energy.
Substitute
Thus, the change in internal energy of the copper slab is
Write the expression for the change in internal energy due to the temperature change.
Here,
Substitute
Conclusion:
Therefore, the change in temperature of both objects is
(i)
The input energy and the change in internal energy for the stationary slab.
(i)

Answer to Problem 20.76AP
The input energy is
Explanation of Solution
Given info: The mass of the copper slab is
The temperature of the stationary slab is
Conclusion:
Therefore, the input energy is
Want to see more full solutions like this?
Chapter 20 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- A man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forwardA golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forward
- A particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forwardneed answer asap please thank youarrow_forward3. a. Determine the potential difference between points A and B. b. Why does point A have a higher potential energy? Q = +1.0 C 3.2 cm 4.8 cm Aarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





