Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 20.49P
Two lightbulbs have cylindrical filaments much greater in length than in diameter. The evacuated bulbs are identical except that one operates at a filament temperature of 2 100°C and the other operates at 2 000°C. (a) Find the ratio of the power emitted by the hotter lightbulb to that emitted by the cooler lightbulb. (b) With the bulbs operating at the same respective temperatures, the cooler lightbulb is to be altered by making its filament thicker so that it emits the same power as the hotter one. By what factor should the radius of this filament be increased?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Two lightbulbs have cylindrical filaments much greater in length than in diameter. The evacuated bulbs are identical except that one operates at a filament temperature of 2 100°C and the other operates at 2 000°C. (a) Find the ratio of the power emitted by the hotter lightbulb to that emitted by the cooler lightbulb. (b) With the bulbs operating at the same respective temperatures, the cooler lightbulb is to be altered by making its filament thicker so that it emits the same power as the hotter one. By what factor should the radius of this filament be increased?
Assume that the efficiency of the portable solar panel shown in the figure is 19%.(a)(a)What is the amount of solar radiation required to provide rated output power?(b)(b)The camper connects the panel to a hot water heater in a 1L water container in sunlight according to (a). How long does it take to raise the temperature of this water from 1 degree Celsius to 100 degrees Celsius? Suppose there is no heat loss.
An electric immersion heater has a power rating of 1800 W. If the heater is placed in a 1.3 kg of water at 30 °C, how
many minutes will it take to bring the water to a boiling temperature? (Assume that there is no heat loss except to the water itself. water=4186 J/kg.°C)
Chapter 20 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 20 - Prob. 20.1QQCh. 20 - Suppose the same process of adding energy to the...Ch. 20 - Prob. 20.3QQCh. 20 - Characterize the paths in Figure 19.12 as...Ch. 20 - Prob. 20.5QQCh. 20 - An ideal gas is compressed to half its initial...Ch. 20 - A poker is a stiff, nonflammable rod used to push...Ch. 20 - Assume you are measuring the specific heat of a...Ch. 20 - Prob. 20.4OQCh. 20 - Prob. 20.5OQ
Ch. 20 - Ethyl alcohol has about one-half the specific heat...Ch. 20 - The specific heat of substance A is greater than...Ch. 20 - Beryllium has roughly one-half the specific heat...Ch. 20 - Prob. 20.9OQCh. 20 - A 100-g piece of copper, initially at 95.0C, is...Ch. 20 - Prob. 20.11OQCh. 20 - If a gas is compressed isothermally, which of the...Ch. 20 - Prob. 20.13OQCh. 20 - If a gas undergoes an isobaric process, which of...Ch. 20 - Prob. 20.15OQCh. 20 - Prob. 20.1CQCh. 20 - You need to pick up a very hot cooking pot in your...Ch. 20 - Prob. 20.3CQCh. 20 - Prob. 20.4CQCh. 20 - Prob. 20.5CQCh. 20 - In 1801, Humphry Davy rubbed together pieces of...Ch. 20 - Prob. 20.7CQCh. 20 - Prob. 20.8CQCh. 20 - Prob. 20.9CQCh. 20 - When camping in a canyon on a still night, a...Ch. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 20.12CQCh. 20 - Prob. 20.1PCh. 20 - Consider Joules apparatus described in Figure...Ch. 20 - Prob. 20.3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - What mass of water at 25.0C must be allowed to...Ch. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - In cold climates, including the northern United...Ch. 20 - A 50.0-g sample of copper is at 25.0C. If 1 200 J...Ch. 20 - An aluminum cup of mass 200 g contains 800 g of...Ch. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 20 - An electric drill with a steel drill bit of mass m...Ch. 20 - An aluminum calorimeter with a mass of 100 g...Ch. 20 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 20 - Two thermally insulated vessels are connected by a...Ch. 20 - A 50.0-g copper calorimeter contains 250 g of...Ch. 20 - Prob. 20.17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - A 75.0-g ice cube at 0C is placed in 825 g of...Ch. 20 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 20 - Steam at 100C is added to ice at 0C. (a) Find the...Ch. 20 - A 1.00-kg Mock of copper at 20.0C is dropped into...Ch. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 20.24PCh. 20 - An ideal gas is enclosed in a cylinder with a...Ch. 20 - Prob. 20.26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - (a) Determine the work done on a gas that expands...Ch. 20 - An ideal gas is taken through a quasi-static...Ch. 20 - A gas is taken through the cyclic process...Ch. 20 - Consider the cyclic process depicted in Figure...Ch. 20 - Why is the following situation impossible? An...Ch. 20 - A thermodynamic system undergoes a process in...Ch. 20 - A sample of an ideal gas goes through the process...Ch. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 20.37PCh. 20 - One mole of an ideal gas does 3 000 J of work on...Ch. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - In Figure P19.22, the change in internal energy of...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - A glass windowpane in a home is 0.620 cm thick and...Ch. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - A student is trying to decide what to wear. His...Ch. 20 - The surface of the Sun has a temperature of about...Ch. 20 - The tungsten filament of a certain 100-W lightbulb...Ch. 20 - At high noon, the Sun delivers 1 000 W to each...Ch. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 20.50PCh. 20 - A copper rod and an aluminum rod of equal diameter...Ch. 20 - A box with a total surface area of 1.20 m2 and a...Ch. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - At our distance from the Sun, the intensity of...Ch. 20 - A bar of gold (Au) is in thermal contact with a...Ch. 20 - Prob. 20.56PCh. 20 - Prob. 20.57PCh. 20 - A gas expands from I to Fin Figure P20.58 (page...Ch. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Liquid nitrogen has a boiling point of 77.3 K and...Ch. 20 - An aluminum rod 0.500 m in length and with a cross...Ch. 20 - Prob. 20.62APCh. 20 - Prob. 20.63APCh. 20 - Prob. 20.64APCh. 20 - Prob. 20.65APCh. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - On a cold winter day. you buy roasted chestnuts...Ch. 20 - Prob. 20.68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 20.70APCh. 20 - A 40.0-g ice cube floats in 200 g of water in a...Ch. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Review. A 670-kg meteoroid happens to be composed...Ch. 20 - Prob. 20.74APCh. 20 - Prob. 20.75APCh. 20 - Prob. 20.76APCh. 20 - Water in an electric teakettle is boiling. The...Ch. 20 - Prob. 20.78APCh. 20 - Prob. 20.79APCh. 20 - A student measures the following data in a...Ch. 20 - Consider the piston cylinder apparatus shown in...Ch. 20 - A spherical shell has inner radius 3.00 cm and...Ch. 20 - Prob. 20.83CPCh. 20 - (a) The inside of a hollow cylinder is maintained...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small electric immersion heater is used to heat 100 g of water for a cup of instant coffee. The heater is labeled “200 watts”. Calculate the time required to bring all this water from 23.0 °C to 100 °C, ignoring any heat losses. Assume specific heat of water is 4.187 J/g-°C.arrow_forwardA cylindrical resistor element on a circuit board dissipates 0.15 W of power in an environment at 40°C. The resistor is 1.2 cm long, and has a diameter of 0.3 cm. Assuming heat to be transferred uniformly from all surfaces, determine the amount of heat this resistor dissipates during a 24 h period;arrow_forwardA 2 ohm heater takes 5 amperes while submerged in 1400 grams of water contained in a vessel with a water equivalent to 100 grams. What is the efficiency of the system if the time required for the temperature to change by 80 degrees celsius is 3.1007 hours.arrow_forward
- A bulb delivers 33 W of radiant energy when its filament is at 1900 °C . If the temperature increases by 100 °C , what is the new rate of energy radiated by this bulb? O 39.51 W 36.11 W O 27.56 W O 40.52 Warrow_forwardAt winter design conditions, a house is projected to lose heat at a rate of 60,000 Btu/h. The internal heat gain from people, lights, and appliances is estimated to be 6000 Btu/h. If this house is to be heated by electric resistance heaters, determine the required rated power of these heaters in kW to maintain the house at constant temperature.arrow_forward(a) How much energy is necessary to heat 7.0 kg of water from room temperature (20°C) to its boiling point? (Assume no energy loss.)(b) If electrical energy were used, how much would this cost at 19¢ per kWh?arrow_forward
- An incandescent lightbulb is an inexpensive but highly inefficient device that converts electrical energy into light. It converts about 10 percent of the electrical energy it consumes into light while converting the remaining 90 percent into heat. (A fluorescent lightbulb will give the same amount of light while consuming only one-fourth of the electrical energy, and it will last 10 times longer than an incandescent lightbulb.) The glass bulb of the lamp heats up very quickly as a result of absorbing all that heat and dissipating it to the surroundings by convection and radiation. Consider a 10-cm-diameter 100-W lightbulb cooled by a fan that blows air at 30°C to the bulb at a velocity of 2 m/s. The surrounding surfaces are also at 30°C, and the emissivity of the glass is 0.9. Assuming 10 percent of the energy passes through the glass bulb as light with negligible absorption and the rest of the energy is absorbed and dissipated by the bulb itself, determine the equilibrium temperature…arrow_forwardAnswer the following. (a) How much energy is necessary to heat 2.0 kg of water from room temperature (20°C) to its boiling point? (Assume no energy loss.)kcal(b) If electrical energy were used, how much would this cost at 15¢ per kWh?arrow_forwardA long length of copper wire is initially at room temperature (23∘C) when it is connected across the terminals of an ideal potential source of V0=10V. The power dissipated by the wire as heat is initially measured to be Pinitial = 50W. The wire begins to heat up, but eventually reaches a "steady state" temperature (i.e., the wire is now warmer than the original room temperature, but it is no longer getting any hotter.) At this point, the power dissipated by the same circuit is Pfinal = 44.3 W. Calculate the final temperature of the copper wire. (You can find the temperature coefficient of resistivity for copper from the table in the text above.)arrow_forward
- A metallic rod is heated by current carrying wire. The wire provides a constant power(P) to the metallic rod. The metal rod is enclosed in an insulated container. It is observed that the temperature (T) of the metal rod changes with time(t) as T = To(1+at/4) where a is some constant with appropriate dimension while To is initial temperature of rod. The heat capacity of metal isarrow_forwardA fluorescent tube has a power rating of 52 W. It is also left on for 3 hours, and 92 170 J of energy was used to produce radiant energy. What is the efficiency of the fluorescent tube?arrow_forwardCold water at a temperature of 15 degree Celsius enters a heater, and the resulting hot water has a temperature of 61 degree Celsius. A person uses 120 kg of hot water in taking a shower. (a) Find the energy needed to heat the water. (b) Assuming that the utility company charges $0.10 per kilowatt · hour for electrical energy, determine the cost of heating the water. (1KWh = 3.6 x 10^6 J)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY