Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 20.15OQ
To determine
The time taken by the heater to melt the ice at
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(a) How long does a 2.0 * 10^5 Btu/h water heater take to raise the temperature of 40 gal of water from 70 F to 100°F? Metric version: (b) How long does a 59 kW water heater take to raise the temperature of 150 L of water from 21C to 38C?
An ice-cube tray is filled with 75.0 g of water. After the filled tray reaches an equilibrium temperature 20.0°C, it is placed in a freezer set at -8.00°C to make ice cubes. (a) Describe the processes that occur as energy is being removed from the water to make ice. (b) Calculate the energy that must be removed from the water to make ice cubes at -8.00°C.
A sealed container holding 0.500 kg of liquid nitrogen at its boiling point of 77.3 K is placed in a large room at 21.0°C. Energy is transferred from the room to the nitrogen as the liquid nitrogen boils into a gas and then warms to the room’s temperature. (a) Assuming the room’s temperature remains essentially unchanged at 21.0°C, calculate the energy transferred from the room to the nitrogen. (b) Estimate the change in entropy of the room. Liquid nitrogen has a latent heat of vaporization of 2.01 x 105 J/kg. The specific heat of N2 gas at constant pressure is c(N2) = 1.04 x 103 J/kg · K .
Chapter 20 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 20 - Prob. 20.1QQCh. 20 - Suppose the same process of adding energy to the...Ch. 20 - Prob. 20.3QQCh. 20 - Characterize the paths in Figure 19.12 as...Ch. 20 - Prob. 20.5QQCh. 20 - An ideal gas is compressed to half its initial...Ch. 20 - A poker is a stiff, nonflammable rod used to push...Ch. 20 - Assume you are measuring the specific heat of a...Ch. 20 - Prob. 20.4OQCh. 20 - Prob. 20.5OQ
Ch. 20 - Ethyl alcohol has about one-half the specific heat...Ch. 20 - The specific heat of substance A is greater than...Ch. 20 - Beryllium has roughly one-half the specific heat...Ch. 20 - Prob. 20.9OQCh. 20 - A 100-g piece of copper, initially at 95.0C, is...Ch. 20 - Prob. 20.11OQCh. 20 - If a gas is compressed isothermally, which of the...Ch. 20 - Prob. 20.13OQCh. 20 - If a gas undergoes an isobaric process, which of...Ch. 20 - Prob. 20.15OQCh. 20 - Prob. 20.1CQCh. 20 - You need to pick up a very hot cooking pot in your...Ch. 20 - Prob. 20.3CQCh. 20 - Prob. 20.4CQCh. 20 - Prob. 20.5CQCh. 20 - In 1801, Humphry Davy rubbed together pieces of...Ch. 20 - Prob. 20.7CQCh. 20 - Prob. 20.8CQCh. 20 - Prob. 20.9CQCh. 20 - When camping in a canyon on a still night, a...Ch. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 20.12CQCh. 20 - Prob. 20.1PCh. 20 - Consider Joules apparatus described in Figure...Ch. 20 - Prob. 20.3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - What mass of water at 25.0C must be allowed to...Ch. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - In cold climates, including the northern United...Ch. 20 - A 50.0-g sample of copper is at 25.0C. If 1 200 J...Ch. 20 - An aluminum cup of mass 200 g contains 800 g of...Ch. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 20 - An electric drill with a steel drill bit of mass m...Ch. 20 - An aluminum calorimeter with a mass of 100 g...Ch. 20 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 20 - Two thermally insulated vessels are connected by a...Ch. 20 - A 50.0-g copper calorimeter contains 250 g of...Ch. 20 - Prob. 20.17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - A 75.0-g ice cube at 0C is placed in 825 g of...Ch. 20 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 20 - Steam at 100C is added to ice at 0C. (a) Find the...Ch. 20 - A 1.00-kg Mock of copper at 20.0C is dropped into...Ch. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 20.24PCh. 20 - An ideal gas is enclosed in a cylinder with a...Ch. 20 - Prob. 20.26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - (a) Determine the work done on a gas that expands...Ch. 20 - An ideal gas is taken through a quasi-static...Ch. 20 - A gas is taken through the cyclic process...Ch. 20 - Consider the cyclic process depicted in Figure...Ch. 20 - Why is the following situation impossible? An...Ch. 20 - A thermodynamic system undergoes a process in...Ch. 20 - A sample of an ideal gas goes through the process...Ch. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 20.37PCh. 20 - One mole of an ideal gas does 3 000 J of work on...Ch. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - In Figure P19.22, the change in internal energy of...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - A glass windowpane in a home is 0.620 cm thick and...Ch. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - A student is trying to decide what to wear. His...Ch. 20 - The surface of the Sun has a temperature of about...Ch. 20 - The tungsten filament of a certain 100-W lightbulb...Ch. 20 - At high noon, the Sun delivers 1 000 W to each...Ch. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 20.50PCh. 20 - A copper rod and an aluminum rod of equal diameter...Ch. 20 - A box with a total surface area of 1.20 m2 and a...Ch. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - At our distance from the Sun, the intensity of...Ch. 20 - A bar of gold (Au) is in thermal contact with a...Ch. 20 - Prob. 20.56PCh. 20 - Prob. 20.57PCh. 20 - A gas expands from I to Fin Figure P20.58 (page...Ch. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Liquid nitrogen has a boiling point of 77.3 K and...Ch. 20 - An aluminum rod 0.500 m in length and with a cross...Ch. 20 - Prob. 20.62APCh. 20 - Prob. 20.63APCh. 20 - Prob. 20.64APCh. 20 - Prob. 20.65APCh. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - On a cold winter day. you buy roasted chestnuts...Ch. 20 - Prob. 20.68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 20.70APCh. 20 - A 40.0-g ice cube floats in 200 g of water in a...Ch. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Review. A 670-kg meteoroid happens to be composed...Ch. 20 - Prob. 20.74APCh. 20 - Prob. 20.75APCh. 20 - Prob. 20.76APCh. 20 - Water in an electric teakettle is boiling. The...Ch. 20 - Prob. 20.78APCh. 20 - Prob. 20.79APCh. 20 - A student measures the following data in a...Ch. 20 - Consider the piston cylinder apparatus shown in...Ch. 20 - A spherical shell has inner radius 3.00 cm and...Ch. 20 - Prob. 20.83CPCh. 20 - (a) The inside of a hollow cylinder is maintained...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In 1993, the U.S. government instituted a requirement that all room air conditioners sold in the United States must have an energy efficiency ratio (EER) of 10 or higher. The EER is defined as the ratio of the cooling capacity of the air conditioner, measured in British thermal units per hour, or Btu/h, to its electrical power requirement in watts. (a) Convert the EER of 10.0 to dimensionless form, using the conversion 1 Btu = 1 055 J. (b) What is the appropriate name for this dimensionless quantity? (c) In the 1970s, it was common to find room air conditioners with EERs of 5 or lower. State how the operating costs compare for 10 000-Btu/h air conditioners with EERs of 5.00 and 10.0. Assume each air conditioner operates for 1 500 h during the summer in a city where electricity costs 17.0 per kWh.arrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forwardIn an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 220-W electric immersion heater in 0.320 kgm of water. (a) How much heat must be added to the water to raise its temperature from 20.0°C to 80.0°C? (b) How much time is required? Assume that all of the heater’s power goes into heating of water Thermodynamicsarrow_forward
- The heat capacity of air at room temperature and pressure is approximately 21 J×mol-1×K-1. a) How much energy is required to raise the temperature of a room dimensions 5.5 m x 6.5 m x 3.0 m by 10°C from room temperature (298.15 K) assuming ideal behavior? b) How long will it take a heater rated at 1.5 kW to achieve that increase if 1 W = 1 J×s-1 (assuming no loss)?arrow_forwardYou have a spherical heater, outside diameter = 3.40 cm, immersed in a container of water. In order to keep the water in the container heated to a constant temperature of 35.0°C you adjust the temperature of the spherical heater. You reach a steady-state condition when the surface temperature of the spherical heater is at 79.0°C. Assuming the electrical efficiency of the heater is 100.0%, calculate the power required by the heater (i.e., calculate q). Ignore radiation.arrow_forwardA “solar cooker” consists of a curved reflecting mirror that focuses sunlight onto the object to be heated (Fig. P11.69). The solar power per unit area reaching the Earth at the location of a 0.50-m-diameter solar cooker is 600. W/m2. Assuming 50% of the incident energy is converted to thermal energy, how long would it take to boil away 1.0 L of water initially at 20.°C? (Neglect the specific heat of the container.)arrow_forward
- Six kilograms of liquid water at 0° C is put into the freezer compartment of a Carnot refrigerator. The temperature of the compartment is -15.3° C, and the temperature of the kitchen is 24.9° C. If the cost of electrical energy is ten cents per kilowatt · hour, how much does it cost to make two kilograms of ice at 0° C?arrow_forwardA steam pipe is covered with 1.25 cm thick insulating material of thermal conductivity 0.200 W / m. ° C. How much energy is lost every second when the steam is at 200 ° C and the surrounding air is at 20 ° C? The pipe has a circumference of 950 cm and a length of 68 m. Neglect losses through the ends of the pipe.arrow_forwardSuppose 9.30 x 105 J of energy are transferred to 2.00 kg of ice at 0°C. (a) Calculate the energy required to melt all the ice into liquid water. (b) How much energy remains to raise the temperature of the liquid water? (c)Determine the final temperature of the liquid water in Celsius.arrow_forward
- Suppose 9.30 x 105 J of energy are transferred to 2.00 kg of ice at 0°C. (a) Calculate the energy required to melt all the ice into liquid water. (b) How much energy remains to raise the temperature of the liquid water? (c) Determine the final temperature of the liquid water in Celsius.arrow_forwardAn electric heater transfers 8.90 ✕ 105 J into a block of ice with a mass of 2.16 kg and an initial temperature of 0°C. (a) How much of the energy (in J) supplied by the heater goes into melting all the ice into liquid water? (Enter your answer to at least three significant figures.) J (b) How much of the energy (in J) supplied by the heater goes into raising the temperature of the liquid water? (Enter your answer to at least three significant figures.) J (c) What is the final temperature of the liquid water in degrees Celsius? °Carrow_forwardA 1.00-L insulated bottle is full of tea at 90.0°C. You pour out one cup of tea and immediately screw the stopper back on the bottle. Make an order-of-magnitude estimate of the change in temperature of the tea remaining in the bottle that results from the admission of air at room temperature. State the quantities you take as data and the values you measure or estimate for them.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning