Interpretation:
Whether an achiral or two equal enantiomeric products would be given has to be predicted in the product of the given reaction and explained with chair like transition state.
Concept Introduction:
Cope-rearrangement:
It is a pericyclic reaction that involves the redistribution of six electrons through the formation of a cyclic transition state from which a
Example with mechanism of cope-arrangement:
In this mechanism, two pi-bonds and one sigma bond of the reactant molecule has been rearranged and formed two new pi-bonds through a cyclic transition state.
Identification of cope-rearrangement in a
In the cope-rearrangement, the flow of electrons takes place between six bonds that are bonded as
The carbon atoms that are involving in the cope-rearrangement are shown in bold.
Stereochemistry in a product formed:
- • In the product of a
chemical reaction , if a carbon atom has been attached with four different carbon atoms, then it is known as chiral carbon atom or stereocenter in the product. - • The bonds of the
functional groups because of which a new chiral carbon is supposed to form have to be represented in solid wedge bond and hashed-wedge bonds according to the particular enantiomer. - • Racemic mixture is the mixture of two enantiomers in equal proportions.
- • Enantiomers are non-superimposable mirror images.
- • Achiral product is the product in which there won’t be any chiral centre or stereocenter.
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
Organic Chemistry
- Can you please explain why the correct answer is molecules 2 and 4? Please provide a detailed explanation as well as the two molecules drawn showing what and where it is conjugated.arrow_forwardCan you please explain why the correct answer is (2E, 4Z, 6Z)-2,4,6-Nonatriene? Please include a detailed explanation and a drawing of the structure, with the corresponding parts of the answer labeled. I'm confused why 6 is Z and why it is Nonatriene.arrow_forward? /1600 O Macmillan Learning Using the data in the table, determine the rate constant of the Trial [A] (M) [B] (M) Rate (M/s) reaction and select the appropriate units. 1 0.240 0.350 0.0187 2 0.240 0.700 0.0187 A+2B C+D 3 0.480 0.350 0.0748 k = Unitsarrow_forward
- Can you please explain why structure 3 is the correct answer? I am having trouble understanding why it is aromatic. Can you also label molecules 1, 2, 4, and 5 with the correct nonaromatic or antiaromatic?arrow_forwardQ1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardCan you please explain why answer 5 (V) is the correct answer?arrow_forward
- Can you please explain why structure 3 is the correct answer? Please give a detailed explanation.arrow_forwardPart VII. The H-NMR of a compound with molecular formula C5 H 10 O2 is given below. Find the following: (a) The no. of protons corresponding to each signal in the spectra (6) Give the structure of the compound and assign the signals to each proton in the compound. a 70.2 Integration Values C5H10O2 b 47.7 C 46.5 d 69.5 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 Chemical Shift (ppm) 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8arrow_forwardPart 111. 1 H-NMR spectrum of a compound with integration values in red is given below. Answer the following: (a) write the signals in the 'H-NMR spectrum to the corresponding protons on the structure of the molecule below. (b) Identify the theoretical multiplicities for each proton in the compound. Also give the possible. complex splitting patterns assuming J values are not similar. там Br 22 2 3 6 4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0 Chemical Shift (ppm) ra. Br 2 3 6 6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 Chemical Shift (ppm) 2 2 Br 7.3 7.2 7.1 7.0 6.9 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 Chemical Shift (ppm) 5.9 5.8 5.7 5.5 5.4 5.3 5.2 5.0 4.9arrow_forward
- 1600° 1538°C 1493°C In the diagram, the letter L indicates that it is a liquid. Indicate its components in the upper region where only L is indicated. The iron-iron carbide phase diagram. Temperature (°C) 1400 8 1394°C y+L 1200 2.14 y, Austenite 10000 912°C 800a 0.76 0.022 600 400 (Fe) a, Ferrite Composition (at% C) 15 1147°C a + Fe3C 2 3 Composition (wt% C) L 2500 4.30 2000 y + Fe3C 727°C 1500 Cementite (Fe3C) 1000 4 5 6 6.70 Temperature (°F)arrow_forwardNonearrow_forwardPart II. Given below are the 'H-NMR spectrum at 300 MHz in CDC13 and mass spectrum using electron ionization of compound Brian. The FTIR of the said compound showed a strong peak at 1710 cm"). Determine the following: (a) molecular Formula and Degree of unsaturation of compound Brian (b) Basing on the given H-NMR spectrum tabulate the following (i) chemical shifts (ii) integration, ciii) multiplicity and (iv) interferences made for each signal (c) Draw the structure of compound Brian. ) ΕΙ 43 41 27 71 114 (M+) Hmmm 20 30 40 50 60 70 80 90 100 110 120 1H NMR spectrum 300 MHz in CDCl3 2.0 alle 1.0arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning