(a)
The final temperature.
(a)
Answer to Problem 15P
The final temperature is
Explanation of Solution
The heat lost from the oxygen at higher temperature must be equal to the heat gained by oxygen at lower temperature.
Write the equation for the heat change of the system.
Here,
Write the equation for
Here,
The mass can be expressed as the product of molar mass and the number of moles of the gas.
Write the expression for
Here,
Put the above equation in equation (II).
Write the equation for
Here,
Write the expression for
Here,
Put the above equation in equation (IV).
Put equations (III) and (V) in equation (I).
Write the ideal gas equation.
Here,
Rewrite the above equation for
Use equation (VII) to write the expression for
Here,
Use equation (VII) to write the expression for
Here,
Put equations (VIII) and (IX) in equation (VI) and rewrite it for
Conclusion:
Substitute
Therefore, the final temperature is
(b)
The final pressure.
(b)
Answer to Problem 15P
The final pressure is
Explanation of Solution
Rewrite the ideal gas equation for pressure.
Use the above equation to write the expression for the final pressure of the oxygen.
Here,
For the final state of the system, the value of
Write the equation for
Put equations (VIII) and (IX) in the above equation.
Write the equation for
Put equations (X), (XII) and (XIII) in equation (XI).
Conclusion:
Substitute
Therefore, the final pressure is
Want to see more full solutions like this?
Chapter 20 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forward
- A gas is at 200 K. If we wish to double the rms speed of the molecules of the gas, to what value must we raise its temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K (e) 1 130 Karrow_forwardA 40.0-g projectile is launched by the expansion of hot gas in an arrangement shown in Figure P12.4a. The cross sectional area of the launch tube is 1.0 cm2, and the length that the projectile travels down the tube after starting from rest is 52 cm. As the gas expands, the pressure varies as shown in Figure P12.4b. The values for the initial pressure and volume are P1 = 11 105 Pa and Vi = 8.0 cm3 while the final values are Pf = 1.0 105 Pa and Vf = 8.0 cm3. Friction between the projectile and the launch tube is negligible, (a) If the projectile is launched into a vacuum, what is the speed of the projectile as it leaves the launch tube? (b) If instead the projectile is launched into air at a pressure of 1.0 105 Pa. what fraction of the work done by the expanding gas in the tube is spent by the projectile pushing air out of the way as it proceeds down tile tube?arrow_forwardTwo metal bars are made of invar and a third bar is made of aluminum. At 0C, each of the three bars is drilled with two holes 40.0 cm apart. Pins are put through the holes to assemble the bars into an equilateral triangle as in Figure P18.31. (a) First ignore the expansion of the invar. Find the angle between the invar bars as a function of Celsius temperature. (b) Is your answer accurate for negative as well as positive temperatures? (c) Is it accurate for 0C? (d) Solve the problem again, including the expansion of the invar. Aluminum melts at 660C and invar at 1 427C. Assume the tabulated expansion coefficients are constant. What are (e) the greatest and (f) the smallest attainable angles between the invar bars? Figure P18.31arrow_forward
- An ideal gas is trapped inside a tube of uniform cross-sectional area sealed at one end as shown in Figure P19.49. A column of mercury separates the gas from the outside. The tube can be turned in a vertical plane. In Figure P19.49A, the column of air in the tube has length L1, whereas in Figure P19.49B, the column of air has length L2. Find an expression (in terms of the parameters given) for the length L3 of the column of air in Figure P19.49C, when the tube is inclined at an angle with respect to the vertical. FIGURE P19.49arrow_forwardA sample of an ideal gas is in a tank of constant volume. The sample gains heat energy and its temperature changes from 300 K to 900 K. If v, is the average speed of the gas molecules before absorption of heat and v2 the average speed after absorption of heat, what is the ratio v2/v, ? A 3/2 B V3 30. D 1/3arrow_forwardA bicycle tire has a pressure of P1 = 7.1 × 105 Pa at a temperature of T = 18.5°C and contains V = 2.00 L of gas A: You open the valve on the bicycle tire and let out an amount of air which has a volume Va at atmospheric pressure Pa and at the temperature T of the tire. How many moles will be in this amount of air, in terms of variables given in the problem statement? B: What will the pressure of the tire be now, in terms of the variables given in the problem statement? Assume the tire temperature and volume remain constant. C: What will this pressure be, in pascals, if the amount of air let out was 95 cm3?arrow_forward
- Two small containers, each with a volume of 100 cm3, contain helium gas at 0°C and 1.00 atm pressure. The two containers are joined by a small open tube of negligible volume, allowing gas to flow from one container to the other. What common pressure will exist in the two containers if the temperature of one container is raised to 100°C while the other container is kept at 0°C?arrow_forwardA high-pressure gas cylinder contains 80.0 L of toxic gas at a pressure of 1.20 107 N/m2 and a temperature of 12.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperatures (−78.5°C), to reduce the leak rate and pressure so that it can be safely repaired. what is the final pressure in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? What is the final pressure if one-tenth of the gas escapes? To what temperature must the tank be cooled to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there is no leakage during cooling)?arrow_forwardA pipe of length L connects to thermal reservoirs that are kept constant at temperatures T1 and T2. The pipe contains a gas with a thermal conductivity κ, a density ρ, and a heat capacity cP. What is the temperature T of the gas in the tube at a distance x=0.4L away from the thermal reservoir with temperature T1? Select one: a.T=T1+0.4(T2−T1) b.T=T1+0.4κρcP(T2−T1) c.T=T1+0.4(T1−T2) d.T=0.5(T1+T2)arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning