Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 20, Problem 64AP
To determine
The specific heat of the liquid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sample of an ideal gas is in a tank of constant volume. The sample absorbs heat energy so that its temperature changes from 300 K to 600 K. If v1 is the average speed of the gas molecules before the absorption of heat and v, is their average speed after the absorption of heat, what is the ratio v2/ v1 ?
You do an experiment in which you transfer energy to 1.2 moles of a gas and measure it’s change in temperature. You make a graph of the data as shown. The y-axis is the amount of energy added and the x-axis is the temperature.
A) how many moles per molecule does this substance have?
B) is the substance most likely a monatomic gas, diatomic or another type of gas?
Four closed tanks, A, B, C, and D, each contain an ideal gas. The table gives the absolute pressure and volume of the gas in each tank. In each case, there is 0.17 mol of gas. Using this number and the data in the table, compute the temperature of the gas in each tank.
Chapter 20 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 20.2 - Prob. 20.1QQCh. 20.3 - Prob. 20.2QQCh. 20.6 - Prob. 20.3QQCh. 20.6 - Characterize the paths in Figure 19.12 as...Ch. 20.7 - Prob. 20.5QQCh. 20 - Prob. 1OQCh. 20 - Prob. 2OQCh. 20 - Prob. 3OQCh. 20 - Prob. 4OQCh. 20 - Prob. 5OQ
Ch. 20 - Prob. 6OQCh. 20 - Prob. 7OQCh. 20 - Prob. 8OQCh. 20 - Prob. 9OQCh. 20 - Prob. 10OQCh. 20 - Prob. 11OQCh. 20 - Prob. 12OQCh. 20 - Prob. 13OQCh. 20 - Prob. 14OQCh. 20 - Prob. 15OQCh. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Prob. 9CQCh. 20 - Prob. 10CQCh. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 12CQCh. 20 - Prob. 1PCh. 20 - Prob. 2PCh. 20 - Prob. 3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - Prob. 5PCh. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - Prob. 7PCh. 20 - Prob. 8PCh. 20 - Prob. 9PCh. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - Prob. 11PCh. 20 - Prob. 12PCh. 20 - Prob. 13PCh. 20 - Prob. 14PCh. 20 - Prob. 15PCh. 20 - Prob. 16PCh. 20 - Prob. 17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - Prob. 19PCh. 20 - Prob. 20PCh. 20 - Prob. 22PCh. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - Prob. 28PCh. 20 - Prob. 29PCh. 20 - A gas is taken through the cyclic process...Ch. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - A thermodynamic system undergoes a process in...Ch. 20 - Prob. 34PCh. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 37PCh. 20 - Prob. 38PCh. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - Prob. 54PCh. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58APCh. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - Prob. 63APCh. 20 - Prob. 64APCh. 20 - Review. Following a collision between a large...Ch. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - Prob. 67APCh. 20 - Prob. 68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 70APCh. 20 - Prob. 71APCh. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Prob. 73APCh. 20 - Prob. 74APCh. 20 - Prob. 75APCh. 20 - Prob. 76APCh. 20 - Prob. 77APCh. 20 - Prob. 78APCh. 20 - Prob. 79APCh. 20 - Prob. 80APCh. 20 - Prob. 81CPCh. 20 - Prob. 82CPCh. 20 - Prob. 83CPCh. 20 - Prob. 84CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forwardTwo containers hold ideal gases at the same temperature.Container A has twice the volume and half the number of molecules as container B. What is the ratio PA>PB, where PA is the pressure in container A and PB is the pressure in container B?arrow_forward
- Problem 2: The enthalpy of a system is given by the equation H = U + PV where U is the internal energy, P = pressure, and V = volume. In addition, the internal energy, U = Q + W where Q is the heat and W is the work. Suppose we want to find the rate of change in the enthalpy at constant pressure of 1.25 atm, what is the value when heat is absorbed by the system at a rate of 45 J/s and work is done by the system at a rate of 100 J/s when the change of volume is rated at 35 x 105 m/s? 1. What is the change in heat with respect to time? 2. What is the change in internal energy of the system with respect to time? 3. What is the change in enthalpy of the system with respect to time?arrow_forwardSamples A and B are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure (a) gives their temperatures T versus time t. Sample A has a mass of 4.96 kg; sample B has a mass of 1.35 kg. Figure (b) is a general plot for the material of sample B. It shows the temperature change AT that the material undergoes when energy is transferred to it as heat Q. The change AT is plotted versus the energy Q per unit mass of the material, and the scale of the vertical axis is set by AT, = 4.80 °C. What is the specific heat of sample A? 100 AT, 60 20 10 20 8. 16 t (min) Q/m (kJ/kg) (a) (b)arrow_forwardAn oxygen tank has a volume of 100 ft3. When one pound of gas is expelled from the tank, the temperature drops from 80°F to 60°F while the pressure drops to 100psig. Assuming that the oxygen acts as an ideal gas, what is the pressure reading (psig) in the pressure gauge initially?arrow_forward
- Samples A and B are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure (a) gives their temperatures T versus time t. Sample A has a mass of 5.37 kg; sample B has a mass of 1.64 kg. Figure (b) is a general plot for the material of sample B. It shows the temperature change AT that the material undergoes when energy is transferred to it as heat Q. The change AT is plotted versus the energy Q per unit mass of the material, and the scale of the vertical axis is set by AT, = 4.10 °C. What is the specific heat of sample A? 100 AT A 60 20 10 20 8. 16 t (min) Q/m (kJ/kg) (a) (b) Number i Units T (°C) AT (C°)arrow_forwardWhen doing numerical calculations involving temperature, you need to pay particular attention to the temperature scale you are using. In general, you should use the Kelvin scale (for which T = 0 represents absolute zero) in such calculations. This is because the standard thermodynamic equations (i.e., the ideal gas law and the formula for energy of a gas in terms of temperature) assume that zero degrees represents absolute zero. If you are given temperatures measured in units other than kelvins, convert them to kelvins before plugging them into these equations. (You may then want to convert back into the initial temperature unit to give your answer.) The average kinetic energy of the molecules of an ideal gas at 10°C has the value K10. At what temperature T₁ (in degrees Celsius) will the average kinetic energy of the same gas be twice this value, 2K10? Express the temperature to the nearest integer. ► View Available Hint(s) T₁ = Submit Part B IVE ΑΣΦ Ć ? °C The molecules in an ideal…arrow_forwardSamples A and B are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure (a) gives their temperatures T versus time t. Sample A has a mass of 4.79 kg; sample B has a mass of 1.50 kg. Figure (b) is a general plot for the material of sample B. It shows the temperature change AT that the material undergoes when energy is transferred to it as heat Q. The change AT is plotted versus the energy Q per unit mass of the material, and the scale of the vertical axis is set by AT, = 4.50 °C. What is the specific heat of sample A? Number i T (°C) 100 60 20 0 A Units 10 t (min) (a) 20 AT (Cº) AT, 0 8 Q/m (kJ/kg) (b) 16arrow_forward
- When doing numerical calculations involving temperature, you need to pay particular attention to the temperature scale you are using. In general, you should use the Kelvin scale (for which T = 0 represents absolute zero) in such calculations. This is because the standard thermodynamic equations (i.e., the ideal gas law and the formula for energy of a gas in terms of temperature) assume that zero degrees represents absolute zero. If you are given temperatures measured in units other than kelvins, convert them to kelvins before plugging them into these equations. (You may then want to convert back into the initial temperature unit to give your answer.) The average kinetic energy of the molecules of an ideal gas at 10°C has the value K10. At what temperature T₁ (in degrees Celsius) will the average kinetic energy of the same gas be twice this value, 2K10? Express the temperature to the nearest integer. ► View Available Hint(s) T₁ = Submit Part B V ΑΣΦ ? °C The molecules in an ideal gas at…arrow_forwardWhen doing numerical calculations involving temperature, you need to pay particular attention to the temperature scale you are using. In general, you should use the Kelvin scale (for which T = 0 represents absolute zero) in such calculations. This is because the standard thermodynamic equations (i.e., the ideal gas law and the formula for energy of a gas in terms of temperature) assume that zero degrees represents absolute zero. If you are given temperatures measured in units other than kelvins, convert them to kelvins before plugging them into these equations. (You may then want to convert back into the initial temperature unit to give your answer.) Part A The average kinetic energy of the molecules of an ideal gas at 10°C has the value K10. At what temperature T₁ (in degrees Celsius) will the average kinetic energy of the same gas be twice this value, 2K10? Express the temperature to the nearest integer. ► View Available Hint(s) T₁ = Submit Part B V ΑΣΦ Ć wwwwww ? °C The molecules in…arrow_forwardThe data in the following table are from a constant volume gas thermometer experiment. The volume of the gas was kept constant, while the temperature was changed. The resulting pressure was measured. T (°C) P (atm) 0 1.00 20 1.07 100 1.37 −33 0.88 −196 0.28 Based on these data, estimate the value of absolute zero in Celsius by plotting the data on a pressure vs. temperature diagram.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY