PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
7th Edition
ISBN: 9781119610526
Author: Mannering
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 9P
To determine
The speed of the car to achieve its maximum speed when its engine is producing maximum power.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1500kg vehicle subjected to safety test suddenly hit the brakes and stopped within 50
meters from a velocity of 100 kilometers per hour. If each wheels carries equal braking
force, determine the force at each wheel.
50m
V1= 100 kmn/h
O 2890N
O 3012N
O 3502N
O 3822N
O2995N
3320N
A van is driven at 60 km/h and is brought to a full stop with constant deceleration in 7seconds. If the total car and driver mass is 1.825kg find the necessary force.
A 2500-lb passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 850 ft. If the vehicle was originally traveling at 55 mi/h, determine (a) the additional horsepower on the curve the vehicle must produce to maintain the original speed, (b) the total resistance force on the vehicle as it traverses the horizontal curve, and (c) the total horsepower. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 30 ft2.?
Chapter 2 Solutions
PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10P
Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40P
Knowledge Booster
Similar questions
- A 2500-lb passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 850 ft. If the vehicle was originally traveling at 55 mi/h, determine (a) the additional horsepower on the curve the vehicle must produce to maintain the original speed, (b) the total resistance force on the vehicle as it traverses the horizontal curve, and (c) the total horsepower. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 30 ft2. Show your solutions and answers.arrow_forwardA 2500-lb passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 850 ft. If the vehicle was originally traveling at 55 mi/h, determine (a) the additional horsepower on the curve the vehicle must produce to maintain the original speed, (b) the total resistance force on the vehicle as it traverses the horizontal curve, and (c) the total horsepower. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 30 ft2. Show your step by step solutions.arrow_forwardO-A vehicle is moving on a road of grade +4% at a speed of 20 m/s. Consider the coefficient of rolling friction as 0.46 and acceleration due to gravity as 10 m/s2. On applying brakes to reach a speed of 10 m/s, Find the required braking distance (in m, round off to nearest integer) along the horizontal.arrow_forward
- A car is traveling at 70 mi/h on a level section of road with good, wet pavement. Its antilock braking system (ABS) only starts to work after the brakes have been locked for 100 ft. If the driver holds the brake pedal down completely, immediately locking the wheels, and keeps the pedal down during the entire process, how many feet will it take the car to stop from the point of initial brake application? (The braking efficiency is 80% with the ABS not working and 100 % with the ABS working. Use theoretical stopping distance and ignore air resistance. Let frl = 0.02 when the brakes are locked, but complete the frl once the ABS becomes active.)arrow_forwardA train is traveling at 60 km/hr. If its brakes give the train a constant deceleration of O.5 m/s, find the distance from the station where the brakes should be applied so that the train will come to a stop at the station. How long will it take the train to stop?arrow_forwardA 2400-lb vehicle (CD = 0.38, Af = 26 ft², and p 0.002378 slugs/ft³) is driven on a surface with coefficient of adhesion equal to 0.8 and a coefficient of rolling friction of 0.014 at all speeds. Assuming minimum theoretical stopping distances, if the vehicle comes to a stop 200 ft after brake application on a level surface and has a braking efficiency of 0.85, what was its initial speed (a) considering aerodynamic resistances, and (b) ignoring aerodynamic resistance?arrow_forward
- Q.64 A motorist travelling at 100 km/h on a highway needs to take the next exit, which has a speed limit of 50 km/ h. The section of the roadway before the ramp entry has a downgrade of 3% and coefficient of friction (f) is 0.35. In order to enter the ramp at the maximum allowable speed limit, the braking distance (expressed in m) from the exit ramp isarrow_forward4. A car comes to a complete stop from an initial speed of 50 mi/hr in a distance of 100 ft. With the same constant acceleration, what would be the stopping distance s from an initial speed of 70 mi/hr?arrow_forwardA 1500 kg automobile that has 2 m of frontal area is driven on a surface and the coefficient of rolling friction is 0.0015 for all speeds. Assuming minimum theoretical stopping distances, if the vehicle comes to a stop 76 m after brake application on a level surface and has braking efficiency of 0.75. what is its initial speed a) if aerodynamic resistance is considered and b) if aerodynamic resistance is ignored? Note: g-9.81 m/s? matin. The roadway is wet with good pavement. > The automobile is traveling at an elevation of 1500 m.arrow_forward
- In traveling a distance of 3 km between points A and D, a car is driven at 100 km/hr from A to B for t seconds. If the brakes are applied for 4 sec between B and C to give a car uniform deceleration from 100 kmph to 60 kmph and it takes ' t ' seconds to move from C to D with a uniform speed of 60 kmph, determine the value of ' t '.arrow_forwardThe speed of the car is 100 kph while the speed of the cargo truck is 80 kph. What percent greater is the speed of the car compared to the truck?arrow_forwardA 1300 kg passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius 260 meters. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 3.50 sq. m. If the vehicle was originally traveling at 60 kph, calculate the following: 1. Additional horsepower on the curve the vehicle must produce to maintain the original speed2. Total resistance force on the vehicle as it traverses the horizontal curve3. Total horsepowerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning