PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
7th Edition
ISBN: 9781119610526
Author: Mannering
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 13P
To determine
The maximum acceleration of car with the base engine and for the car withthe modified engine
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An articulated truck with a 260-hp engine has a maximum speed of 4.65 mph in first gear.
Determine the maximum rimpull of the truck in each of the indicated gears if the efficiency is
85%.
Gear
Speed (mph
First
4
Second
6.6
Third
11.5
Fourth
19
Fifth
32.2
Complete answer
Determine the horsepower produced by a passenger car traveling at a speed of 65 mi/h on a straight road of 5% grade with a smooth pavement. Assume the weight of the car is 4000 lb and the cross-sectional area of the car is 40 f t 2.
Chapter 2 Solutions
PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10P
Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Provide solutions and FBD's if necessary. Thank you!arrow_forwardA 2500-lb passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 850 ft. If the vehicle was originally traveling at 55 mi/h, determine (a) the additional horsepower on the curve the vehicle must produce to maintain the original speed, (b) the total resistance force on the vehicle as it traverses the horizontal curve, and (c) the total horsepower. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 30 ft2.?arrow_forwardA 2500-lb passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 850 ft. If the vehicle was originally traveling at 55 mi/h, determine (a) the additional horsepower on the curve the vehicle must produce to maintain the original speed, (b) the total resistance force on the vehicle as it traverses the horizontal curve, and (c) the total horsepower. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 30 ft2. Show your solutions and answers.arrow_forward
- A 2500-lb passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 850 ft. If the vehicle was originally traveling at 55 mi/h, determine (a) the additional horsepower on the curve the vehicle must produce to maintain the original speed, (b) the total resistance force on the vehicle as it traverses the horizontal curve, and (c) the total horsepower. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 30 ft2. Show your step by step solutions.arrow_forward9.38 The drag coefficient for a newly designed hybrid car is predicted to be 0.21. The cross-sectional area of the car is 30 ft². Determine the aerodynamic drag on the car when it is driven through still air at 55 mph.arrow_forwardQuestion-- A vehicle is moving on a road of grade +4% at a speed of 20 m/s. Consider the coefficient of rolling friction as 0.46 and acceleration due to gravity as 10 m/s². On applying brakes to reach a speed of 10 m/s, find the required braking distance along the horizontal.arrow_forward
- O-A vehicle is moving on a road of grade +4% at a speed of 20 m/s. Consider the coefficient of rolling friction as 0.46 and acceleration due to gravity as 10 m/s2. On applying brakes to reach a speed of 10 m/s, Find the required braking distance (in m, round off to nearest integer) along the horizontal.arrow_forward6 A car is traveling at 20 mi/h on good, dry pavement at 5000 ft elevation. The front-wheel-drive car has a drag coefficient of 0.30, a frontal area of 20 ft2 and a weight of 2500 lb. The wheelbase is 110 inches and the center of gravity is 20 inches from the ground, 50 inches behind the front axle. The engine is producing 95 ft-lb of torque and is in a gear that gives an overall gear reduction ratio of 4.5. The radius of the drive wheels is 14 inches and the mechanical efficiency of the drivetrain is 90%. What would the acceleration of the car be if the driver was accelerating quickly to avoid a collision?arrow_forward8 ft wheelbase Rear-wheel drive Center of gravity 17 inches above the road 4.1 ft behind the front axle. The car weighs 2500 lb Mechanical efficiency of the drivetrain is 93% Wheel radius is 14 inches. If the engine develops 190 ft-lb of torque and the overall gear reduction ratio is 7 to 1, what is the maximum acceleration from rest for the car? Assume good, dry, and level pavement conditions.arrow_forward
- The hydraulic braking system for the truck and trailer is set to produce equal braking forces for the two units. If the brakes are applied uniformly for 8 seconds to bring the rig (truck and trailer) to a stop from a speed of 32 mi/hr down the 5-percent grade, determine the force P in the coupling between the trailer and the truck. The truck weighs 19,000 lbs and the trailer weighs 15,000 lbs. State whether the coupling is in tension or compression. Hint: Answer is NOT 5929.605 Ibsarrow_forwardThe hydraulic braking system for the truck and trailer is set to produce equal braking forces for the two units. If the brakes are applied uniformly for 8 seconds to bring the rig (truck and trailer) to a stop from a speed of 32 mi/hr down the 5-percent grade, determine the force P in the coupling between the trailer and the truck. The truck weighs 19,000 lbs and the trailer weighs 15,000 lbs. State whether the coupling is in tension or compression.arrow_forwardA car is traveling at 70 mi/h on a level section of road with good, wet pavement. Its antilock braking system (ABS) only starts to work after the brakes have been locked for 100 ft. If the driver holds the brake pedal down completely, immediately locking the wheels, and keeps the pedal down during the entire process, how many feet will it take the car to stop from the point of initial brake application? (The braking efficiency is 80% with the ABS not working and 100 % with the ABS working. Use theoretical stopping distance and ignore air resistance. Let frl = 0.02 when the brakes are locked, but complete the frl once the ABS becomes active.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning