PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
7th Edition
ISBN: 9781119610526
Author: Mannering
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 4P
To determine
The drag coefficient of the car.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A Toyota Prius has the following attributes: Drag Coefficient Cd = 0.24, Frontal Area Af = 25.83 ft?, weight = 3064 lb, and Speed = 90 mph. Use air density p = 0.002378 slugs/ft3. If this car is driven up a 2% grade under a head wind speed of 10 mph compute the power required to overcome (a) Aerodynamic Resistance, (b) Rolling Resistance, and (c) Grade Resistance.
A civil engineer's preliminary design for a freeway off-ramp is circular with radius R = 75m. What is the maximum speed (kph) at which vehicles will reach the ramp without losing traction of he believes that the coefficient of static friction between tires and road is least 0.35?
Solve correctly and explain! I'll rate!
Question-- A vehicle is moving on a road of grade +4% at a speed of 20 m/s.
Consider the coefficient of rolling friction as 0.46 and acceleration due to
gravity as 10 m/s². On applying brakes to reach a speed of 10 m/s, find the
required braking distance along the horizontal.
Chapter 2 Solutions
PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10P
Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Provide solutions and FBD's if necessary. Thank you!arrow_forwardA 2500-lb passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 850 ft. If the vehicle was originally traveling at 55 mi/h, determine (a) the additional horsepower on the curve the vehicle must produce to maintain the original speed, (b) the total resistance force on the vehicle as it traverses the horizontal curve, and (c) the total horsepower. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 30 ft2.?arrow_forwardA 2500-lb passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 850 ft. If the vehicle was originally traveling at 55 mi/h, determine (a) the additional horsepower on the curve the vehicle must produce to maintain the original speed, (b) the total resistance force on the vehicle as it traverses the horizontal curve, and (c) the total horsepower. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 30 ft2. Show your solutions and answers.arrow_forward
- A 2500-lb passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 850 ft. If the vehicle was originally traveling at 55 mi/h, determine (a) the additional horsepower on the curve the vehicle must produce to maintain the original speed, (b) the total resistance force on the vehicle as it traverses the horizontal curve, and (c) the total horsepower. Assume that the vehicle is traveling at sea level and has a front cross-sectional area of 30 ft2. Show your step by step solutions.arrow_forwardRead the question carefully and give me right solution with clear calculationsarrow_forwardDetermine the horsepower produced by a passenger car travelling at a speed of 68 mi/hr on a radius of curvature of 1,200 ft road of 4% grade with a smooth pavement. Assume the weight of the car is 4500 lb and the cross sectional area of the car is 45 ft2.arrow_forward
- A 12.5 kN car has a 4000 mm wheelbase, with its center of gravity located 600 mm from the pavement and 1200 mm behind the front axle. Five people weighing on average 80 kg loaded the vehicle, shifting the center of gravity 125 mm nearer to the rear axle. What is the maximum tractive effort (N) that can be developed if the car is a front wheel drive? Use coefficient of road adhesion= 0.55.arrow_forwardSuppose you want to design an air – bag system that can protect the driver in a head on collision at a speed of 100 kph. Estimate how fast the air bag must inflate to effectively protect the driver. Assume the car crumples upon impact over a distance of about 1m. How does the use of the seat belt help the driver?arrow_forwardAn articulated truck with a 260-hp engine has a maximum speed of 4.65 mph in first gear. Determine the maximum rimpull of the truck in each of the indicated gears if the efficiency is 85%. Gear Speed (mph First 4 Second 6.6 Third 11.5 Fourth 19 Fifth 32.2arrow_forward
- A 11.32 kN car has a 3700 mm wheelbase, with its center of gravity located 550 mm from the pavement and 1150 mm behind the front axle. 3 people weighing on average 75 kg loaded the vehicle, shifting the center of gravity 105 mm nearer to the rear axle. What is the maximum tractive effort (N) that can be developed if the car is a rear wheel drive? Use coefficient of road adhesion= 0.56.arrow_forwardThe driver of a 1000kg car traveling on the interstate at 35.0 m/s slams on his brakes to avoid hitting a second vehicle in front of him, which had come to rest because of congestion ahead. After the brakes are applied, a constant friction force of 8000 N acts on the car. Ignore air resistance. (a) At what minimum distance should the brakes be applied to avoid a collision with the other vehicle? (b) (b) If the distance between the vehicles is initially only 30.0 m, at what speed would the collision occur? AXarrow_forwardA 1500 kg automobile that has 2 m of frontal area is driven on a surface and the coefficient of rolling friction is 0.0015 for all speeds. Assuming minimum theoretical stopping distances, if the vehicle comes to a stop 76 m after brake application on a level surface and has braking efficiency of 0.75. what is its initial speed a) if aerodynamic resistance is considered and b) if aerodynamic resistance is ignored? Note: g-9.81 m/s? matin. The roadway is wet with good pavement. > The automobile is traveling at an elevation of 1500 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning