Concept explainers
(a)
Interpretation:
The stronger base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.
Size affecting the stability of the base: In order to determine the strength of the base, the size of an atom overrides electronegativity. As the atoms get larger and the stability of the anions increases even though the electronegativity of the atoms decreases. Stability of the bases increases going down the group. Stable bases are weak bases.
(b)
Interpretation:
The stronger base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.
Size affecting the stability of the base: In order to determine the strength of the base, the size of an atom overrides electronegativity. As the atoms get larger and the stability of the anions increases even though the electronegativity of the atoms decreases. Stability of the bases increases going down the group. Stable bases are weak bases.
(c)
Interpretation:
The stronger base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.
Electronegativity depends on the acidity of a species. Order of electronegativity of hybridization is
(d)
Interpretation:
The stronger base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.
Electronegativity depends on the acidity of a species. Order of electronegativity of hybridization is
(e)
Interpretation:
The strongest base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.
Effect of Inductive electron withdrawal on Acidity: Replacing a Hydrogen with an electronegative substituent pulls bonding electrons toward itself; increases the strength of the acid.
(f)
Interpretation:
The strongest base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
EP ESSENTIAL ORG.CHEM.-MOD.MASTERING
- Steps and explanations pleasearrow_forwardUse diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward
- Match the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forwardCan you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward
- 2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forwardconsider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





