Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 93PP
A wildlife biologist is studying the hunting patterns of tigers. She anesthetizes a tiger and attaches a GPS collar to track its movements. The collar transmits data on the tiger’s position and velocity. Figure 2.16 shows the tiger’s velocity as a function of time as it moves on a one-dimensional path
FIGURE 2.16 The tiger’s velocity (Passage Problems 92-96)
At which marked point(s) is the tiger not accelerating?
- a. E only
- b. A, E, and H
- c. C and F
- d. none of the points (it’s never accelerating)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Concept Simulation 2.3 offers a useful review of the concepts central to this problem. An astronaut on a distant planet wants to
determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of +12.9 m/s and measures a time
of 24.8 s before the rock returns to his hand. What is the acceleration (magnitude and direction) due to gravity on this planet?
(positive = up, negative = down)
Number
-48.2
Units
m/s^2
Clarissa is running at 5m/s to catch the school bus, which is stopped to a nearby bus stop. When Clarissa is still 40 meters away from the bus, the bus is already moving with a constant acceleration of 0.170 m/s2 .
A. Compute the time and the distance does Clarissa have to run before she can overtake the bus.
B. At the instant she reaches the bus, how fast is the bus moving?
An astronaut lands on a newly discovered planet (that has a nice gravitational constant). He proceeds to jump out of the spacecraft and onto the planet's
surface. His height above the ground (in feet) after t seconds is given by the function h (t) =-3t2 +12t +36.
A. How high off the ground is the astronaut after 1 second?
B. What is the astronaut's velocity after 1 second? Is he traveling up or down?
C. How fast is the astronaut traveling when he lands on the planet?
D. When will the astronaut be at his highest point in the jump?
E. Is the astronaut speeding up or slowing down after 2 seconds? At what rate?
Chapter 2 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 2.1 - We just described three trips from Houston to Des...Ch. 2.2 - The figures show position-versus-time graphs for...Ch. 2.3 - An elevator is going up at constant speed, slows...Ch. 2.5 - Standing on a roof, you simultaneously throw one...Ch. 2.6 - The graph shows acceleration versus time for three...Ch. 2 - Under what conditions are average and...Ch. 2 - Does a speedometer measure speed or velocity?Ch. 2 - You check your odometer at the beginning of a days...Ch. 2 - Consider two possible definitions of average...Ch. 2 - Is it possible to be at position x = 0 and still...
Ch. 2 - Is it possible to have zero velocity and still be...Ch. 2 - If you know the initial velocity v0 and the...Ch. 2 - Starting from rest, an object undergoes...Ch. 2 - In which of the velocity-versus-time graphs shown...Ch. 2 - If you travel in a straight line at 50 km/h for 1...Ch. 2 - If you travel in a straight line at 50 km/h for 50...Ch. 2 - In 2009, Usain Bolt of Jamaica set a world record...Ch. 2 - The standard 26-mile, 385-yard marathon dates to...Ch. 2 - Starting front home, you bicycle 24 km north in...Ch. 2 - The Voyager 1 spacecraft is expected to continue...Ch. 2 - In 2008, Australian Emma Snowsill set an...Ch. 2 - Taking Earths orbit to be a circle of radius 1.5 ...Ch. 2 - Whats the conversion factor from meters per second...Ch. 2 - On a single graph, plot distance versus time for...Ch. 2 - For the motion plotted in Fig. 2.15, estimate (a)...Ch. 2 - A model rocket is launched straight upward. Its...Ch. 2 - A giant eruption on the Sun propels solar material...Ch. 2 - Starting from rest, a subway train first...Ch. 2 - A space shuttles main engines cut off 8.5 min...Ch. 2 - An egg drops from a second-story window, taking...Ch. 2 - An airplanes takeoff speed is 320 km/h. If its...Ch. 2 - ThrustSSC, the worlds first supersonic car,...Ch. 2 - Youre driving at 70 km/h when you apply constant...Ch. 2 - Prob. 29ECh. 2 - An X-ray tube gives electrons constant...Ch. 2 - A rocket rises with constant acceleration to an...Ch. 2 - Starting from rest, a car accelerates at a...Ch. 2 - A car moving initially at 50 mi/h begins slowing...Ch. 2 - In a medical X-ray tube, electrons are accelerated...Ch. 2 - Californias Bay Area Rapid Transit System (BART)...Ch. 2 - Youre driving at speed v0 when you spot a...Ch. 2 - You drop a rock into a deep well and 4.4 s later...Ch. 2 - Your friend is sitting 6.5 m above you on a tree...Ch. 2 - A model rocket leaves the ground, heading straight...Ch. 2 - A foul ball leaves the bat going straight up at 23...Ch. 2 - A Frisbee is lodged in a tree 6.5 m above the...Ch. 2 - Space pirates kidnap an earthling and hold him on...Ch. 2 - You allow 40 min to drive 25 mi to the airport,...Ch. 2 - A base runner can get from first to second base in...Ch. 2 - You can run 9.0 m/s, 20% faster than your brother....Ch. 2 - A jetliner leaves San Francisco for New York, 4600...Ch. 2 - An objects position is given by x = bt + ct3 where...Ch. 2 - An objects position as a function of time t is...Ch. 2 - In a drag race, the position of a car as a...Ch. 2 - Squaring Equation 2.7 gives an expression for v2....Ch. 2 - During the complicated sequence that landed the...Ch. 2 - The position of a car in a drag race is measured...Ch. 2 - A fireworks rocket explodes at a height of 82.0 m,...Ch. 2 - The muscles in a grasshoppers legs can propel the...Ch. 2 - On packed snow, computerized antilock brakes can...Ch. 2 - A particle leaves its initial position x0 at time...Ch. 2 - A hockey puck moving at 32 m/s slams through a...Ch. 2 - Amtraks 20th-Century Limited is en route from...Ch. 2 - A jetliner touches down at 220 km/h and comes to a...Ch. 2 - A motorist suddenly notices a stalled car and...Ch. 2 - A racing car undergoing constant acceleration...Ch. 2 - The maximum braking acceleration of a car on a dry...Ch. 2 - After 35 min of running, at the 9-km point in a...Ch. 2 - Youre speeding at 85 km/h when you notice that...Ch. 2 - Airbags cushioned the Mars rover Spirits landing,...Ch. 2 - Calculate the speed with which cesium atoms must...Ch. 2 - A falling object travels one-fourth of its total...Ch. 2 - Youre on a NASA team engineering a probe to land...Ch. 2 - Youre atop a building of height h, and a friend is...Ch. 2 - A castles defenders throw rocks down on their...Ch. 2 - Two divers jump from a 3.00-m platform. One jumps...Ch. 2 - A balloon is rising at 10 m/s when its passenger...Ch. 2 - Landing on the Moon, a spacecraft fires its...Ch. 2 - Youre at mission control for a rocket launch,...Ch. 2 - Youre an investigator for the National...Ch. 2 - You toss a book into your dorm room, just clearing...Ch. 2 - Consider an object traversing a distance L, part...Ch. 2 - A particles position as a function of time is...Ch. 2 - Ice skaters, ballet dancers, and basketball...Ch. 2 - Youre staring idly out your dorm window when you...Ch. 2 - A police radars effective range is 1.0 km, and...Ch. 2 - An object starts moving in a straight line from...Ch. 2 - Youre a consultant on a movie set, and the...Ch. 2 - (a) For the ball in Example 2.6, find its velocity...Ch. 2 - Your roommate is an aspiring novelist and asks...Ch. 2 - You and your roommate plot to drop water balloons...Ch. 2 - Derive Equation 2.10 by integrating Equation 2.7...Ch. 2 - An objects acceleration increases quadratically...Ch. 2 - An objects acceleration is given by the expression...Ch. 2 - An objects acceleration decreases exponentially...Ch. 2 - A ball is dropped from rest at a height li0 above...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...
Additional Science Textbook Solutions
Find more solutions based on key concepts
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
What color of light is least effective in driving photosynthesis? Explain.
Campbell Biology (11th Edition)
24. 0.10 mol of argon gas is admitted to an evacuated 50 cm3 container at 20°C. The gas then undergoes an isoth...
College Physics: A Strategic Approach (3rd Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A girl is standing at the edge of a cliff 100. m above the ground. She reaches out over the edge of the cliff and throws a rock straight upward with a speed 8.00 m/s. a) How long does it take the rock to hit the ground? b) What is the speed of the rock the instant before it hits the ground? Please type answerarrow_forwardSituation 02. Clarissa is running at 5 m/s to catch the school bus, which is stopped to a nearby bus stop. When Clarissa is still 40 meters away from the bus, the bus is already moving with a constant acceleration of 0.170 m/s?. a. Compute the time and the distance does Clarissa have to run before she can overtake the bus. b. At the instant she reaches the bus, how fast is the bus moving?arrow_forwardA remote-controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by v⃗ =[ 5.00m/s − (0.0180m/s3) t2 ] i + [ 2.00m/s + (0.550m/s2) t ] j . a. What is the direction (in degrees counterclockwise from + x - axis) of the acceleration of the car at t = 8.00 s?arrow_forward
- You are driving along Lawrence Ave. at 60 km/h. You see the traffic light ahead is still green and decide to speed up to try to make it through the intersection before it turns red (poor decision!). Your car accelerates at 1.3 m/s. You reach the light after accelerating for 4.3 seconds. What is your speed at the light in m/s? V =v, +aAt A: Pictorial Representation Sketch showing events, describe events, coordinate system, label givens & unknowns with symbols, conversions B: Physics Representation Motion diagram, motion graphs, velocity vectors, events a C: Word Representation Describe motion (no numbers),-assumptions, estimated result (no calculation) D: Mathematical Representation Describe physics of steps, complete equations, algebraically isolate, substitutions with units, final statement of prediction E: Evaluation Answer has reasonable size, direction and units? Why?arrow_forwardQ1. a). A ball is thrown upwards into the air. Total time for the ball to move upwards to the peak and then return to the ground is (251.85) seconds. Find the height to which the ball rises before it reaches its peak. b). You drive a beat up truck along a straight road for 11 km at 60 km/h, at which point the truck runs out of gasoline and stops. Over the next (251.85) min, you walk another 5 km farther. What is your overall displacement from the beginning of drive to your arrival at the station? What is the time interval from the beginning of your drive to your travel at the station? What is your average velocity from beginning of your drive to your arrival at the station?arrow_forwardHelparrow_forward
- A stone is thrown vertically upward from the top of a building. If the equation of the motion of the stone is s=-5t^2+30t+200, where s is the directed distance from the ground in meters and t is in seconds. a. At what time will be the stone hit the ground? Please answer the question in letter a.arrow_forwardA particle moves accordingly to a law of motion s = f(t) = t^2 e^−t, t ≥ 0, where t is measured in seconds and s in feet. a. When is the particle speeding up? b. When is the particle slowing down?arrow_forwardGiven the equation of the displacement x of a certain object at any time t x = 2t + 3t² + 10, in meter a. What is the velocity of the object at time t = 5 seconds? b. What is the acceleration of the object at time t = 10 seconds? Note: Velocity is the first derivative of displacement. Acceleration is the second derivative of displacement.arrow_forward
- A particle moves in one dimension in such a way that its velocity is given by v(t) = (8 m/s3)t2 - 10 m/s. Its position at t=0 is 0. a. Find the particle's acceleration at t=5 seconds. b. What is its position at t=2 seconds?arrow_forwardA car speeds past a stationary police officer while traveling 115 km/h. The officer immediately begins pursuit at a constant acceleration of 9.1 km/h/s, just as the driver passes her. A: How fast, in kilometers per hour, will the police officer be traveling at the time he catches up to the driver?arrow_forwardPlease answer question harrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY