III Careful measurements have been made of Olympic sprinter in the 100 meter dash. A quite realistic model is that the sprinter's velocity is given by v x = a 1 − e − b t where t is in s, v x is in m/s, and the constants a and b are characteristic of the sprinter. Sprinter Carl Lewis's run at the 1987 World Championships is modeled with a = 11.81 m/s and b = 0.6887 s − 1 What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s? Find an expression for the distance traveled at time t. Your expression from part b is a transcendental equation, meaning that you can't solve it for t. However, it's not hard to use trial and error to find the time needed to travel a specific distance. To the nearest 0.01 s, find the time Lewis needed to sprint 100.0 m. His official time was 0.01 s more than your answer, showing that this model is very good, but not perfect.
III Careful measurements have been made of Olympic sprinter in the 100 meter dash. A quite realistic model is that the sprinter's velocity is given by v x = a 1 − e − b t where t is in s, v x is in m/s, and the constants a and b are characteristic of the sprinter. Sprinter Carl Lewis's run at the 1987 World Championships is modeled with a = 11.81 m/s and b = 0.6887 s − 1 What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s? Find an expression for the distance traveled at time t. Your expression from part b is a transcendental equation, meaning that you can't solve it for t. However, it's not hard to use trial and error to find the time needed to travel a specific distance. To the nearest 0.01 s, find the time Lewis needed to sprint 100.0 m. His official time was 0.01 s more than your answer, showing that this model is very good, but not perfect.
III Careful measurements have been made of Olympic sprinter in the 100 meter dash. A quite realistic model is that the sprinter's velocity is given by
v
x
=
a
1
−
e
−
b
t
where t is in s, vxis in m/s, and the constants a and b are characteristic of the sprinter. Sprinter Carl Lewis's run at the 1987 World Championships is modeled with a = 11.81 m/s and
b
=
0.6887
s
−
1
What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?
Find an expression for the distance traveled at time t.
Your expression from part b is a transcendental equation, meaning that you can't solve it for t. However, it's not hard to use trial and error to find the time needed to travel a specific distance. To the nearest 0.01 s, find the time Lewis needed to sprint 100.0 m. His official time was 0.01 s more than your answer, showing that this model is very good, but not perfect.
Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that
system of all three beads is zero.
91
E field lines
93
92
What charge does each bead carry?
91
92
-1.45
=
=
What is the net charge of the system? What charges have to be equal? μC
2.9
×
What is the net charge of the system? What charges have to be equal? μC
93 = 2.9
μС
92
is between and
91 93°
The sum of the charge on q₁ and 92 is 91 + 92 = −2.9 μC, and the net charge of the
Chapter 2 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.