Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 13EAP
a. What constant acceleration, in SI units, must a car have to go from zero to 60 mph in 10 s?
b. How far has the car traveled when it reaches 60 mph? Give your answer both in SI units and in feet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A. The velocity of a car increases from +2.0 m/s to +16.0 m/s in a time period of 3.5 s. What was the average acceleration?
B. If an automobile slows from +26 m/s to +18 m/s in a period of 4.0 s, what was the average acceleration?
2. An object moves in the +x-direction under a constant acceleration.
a. If an object is initially moving at a rate of 35 m/s and comes to a stop over a time of
7.00 seconds, what acceleration did the object undergo?
b. At what time is the object's displacement equal to 15.0 m?
A. Suppose a planner is designing an airport for small airplanes. Such planes must reach a speed of 56 m/s before takeoff and can accelerate at 12.0 m/s2. What is the minimum length for the runway of this airport?
B. How long does it take a car to travel 30.0 m if it accelerates from rest at a rate of 2.00 m/s2?
C. A baseball pitcher throws a fastball with a speed of 30.0 m/s. Assume the acceleration is uniform and the distance through which the ball is accelerated is 3.50 m. What is the acceleration?
Chapter 2 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - FIGURE Q2.4 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.5 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.6 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.7 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.8 shows six frames from the motion...Ch. 2 - You’re driving along the highway at a steady speed...Ch. 2 - A bicycle is traveling east. Can its acceleration...
Ch. 2 - (a) Give an example of a vertical motion with a...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight do from a...Ch. 2 - FIGURE Q2.14 shows the velocity-versus-time graph...Ch. 2 - Alan leaves Los Angeles at 8:00 A.M. to drive to...Ch. 2 - Julie drives 100 mi to Grandmother’s house. On the...Ch. 2 - Larry leaves home at 9:05 and runs at constant...Ch. 2 - FIGURE EX2.4 is the position-versus-time graph of...Ch. 2 - FIGURE EX2.5 shows the position graph of a...Ch. 2 - A particle starts from x0=10matt=0s and moves with...Ch. 2 - FIGURE EX2.7 is a somewhat idealized graph of the...Ch. 2 - FIGURE EX2.8 shows the velocity graph for a...Ch. 2 - FIGURE EX2.9 shows the velocity graph of a...Ch. 2 - FIGURE EX2.7 showed the velocity graph of blood in...Ch. 2 - Prob. 11EAPCh. 2 - FIGURE EX2.1 2 shows the velocity-versus-time...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - A jet plane is cruising at 300 m/s when suddenly...Ch. 2 - a. How many days will it take a spaceship to...Ch. 2 - Prob. 16EAPCh. 2 - A speed skater moving to the left across...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - Acar starts from rest at a stop sign. It...Ch. 2 - Prob. 20EAPCh. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up from ground level...Ch. 2 - 23. When jumping, a flea accelerates at an...Ch. 2 - Prob. 24EAPCh. 2 - A rock is dropped from the top of a tall building....Ch. 2 - A skier is gliding along at 3.0 m/s on horizontal,...Ch. 2 - A car traveling at 30 m/s runs out of gas while...Ch. 2 - Prob. 28EAPCh. 2 - A snowboarder glides down a 50-m-long, 15° hill....Ch. 2 - A small child gives a plastic frog a big push at...Ch. 2 - FIGURE EX2.31 shows the acceleration-versus-time...Ch. 2 - Prob. 32EAPCh. 2 - A particle moving along the x-axis has its...Ch. 2 - A particle moving along the x-axis has its...Ch. 2 - The position of a particle is given by the...Ch. 2 - The position of a particle is given by the...Ch. 2 - Particles A. B. and C move along the x-axis....Ch. 2 - A block is suspended from a spring, pulled down,...Ch. 2 - A particle’s velocity is described by the function...Ch. 2 - Prob. 40EAPCh. 2 - Prob. 41EAPCh. 2 - A particles velocity is given by the function vx=...Ch. 2 - A ball rolls along the smooth track shown in...Ch. 2 - Draw position, velocity, and acceleration graphs...Ch. 2 - FIGURE P2.45 shows a set of kinematic graphs for a...Ch. 2 - FIGURE P2.46 shows a set of kinematic graphs for a...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - You’re driving down the highway late one night at...Ch. 2 - Two cars are driving at the same constant speed on...Ch. 2 - You are playing miniature golf at the golf course...Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A cheetah spots a Thomson’s gazelle, its preferred...Ch. 2 - You are at a train station, standing next to the...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A 1000 kg weather rocket is launched straight up....Ch. 2 - A lead ball is dropped into a lake from a diving...Ch. 2 - A hotel elevator ascends 200 m with a maximum...Ch. 2 - A basketball player can jump to a height of 55 cm....Ch. 2 - You are 9.0 m from the door of your bus, behind...Ch. 2 - Ann and Carol are driving their cars along the...Ch. 2 - Amir starts riding his bike up a 200-m-long slope...Ch. 2 - A very slippery block of ice slides down a smooth...Ch. 2 - Bob is driving the getaway car after the big bank...Ch. 2 - One game at the amusement park has you push a puck...Ch. 2 - A motorist is driving at 20 m/s when she sees that...Ch. 2 - Nicole throws a ball straight up. Chad watches the...Ch. 2 - David is driving a steady 30 m/s when he passes...Ch. 2 - A cat is sleeping on the floor in the middle of a...Ch. 2 - Water drops fall from the edge of a roof at a...Ch. 2 - I was driving along at 20 m/s, trying to change a...Ch. 2 - As an astronaut visiting Planet X, you’re assigned...Ch. 2 - Your goal in laboratory is to launch a ball of...Ch. 2 - When a 1984 Alfa Romeo Spider sports car...Ch. 2 - The two masses in FIGURE P2.75 slide on...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Careful measurements have been made of Olympic...Ch. 2 - III Careful measurements have been made of Olympic...Ch. 2 - A sprinter can accelerate with constant...Ch. 2 - A rubber ball is shot straight up from the ground...Ch. 2 - The Starship Enterprise returns from warp drive to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object is at x = 0 at t = 0 and moves along the x axis according to the velocitytime graph in Figure P2.40. (a) What is the objects acceleration between 0 and 4.0 s? (b) What is the objects acceleration between 4.0 s and 9.0 s? (c) What is the objects acceleration between 13.0 s and 18.0 s? (d) At what time(s) is the object moving with the lowest speed? (e) At what time is the object farthest from x = 0? (f) What is the final position x of the object at t = 18.0 s? (g) Through what total distance has the object moved between t = 0 and t = 18.0 s? Figure P2.40arrow_forwardA cyclist rides 8.0 km east for 20 minutes, then he turns and heads west for 8 minutes and 3.2 km. Finally, he rides east for 16 km, which takes 40 minutes. (a) What is the final displacement of the cyclist? (b) What is his average velocity?arrow_forward(a) A light-rail commuter train accelerates at a rate of 1.35m/s2 . How long does it take to reach its top speed of 80.0 km/h, starting from rest? (b) The same train ordinarily decelerates at a rate of 1.65m/s2 . How long does it take to came to a stop from its top speed? (c) In emergencies, the train can decelerate more rapidly, coming to rest from 80.0 km/h in 8.30 s. What is its emergency acceleration in meters per second sqquared?arrow_forward
- Physics Review A hockey player strikes a puck, giving it an initial velocity of 10.0 m/s in the positive x-direction. The puck slows uniformly to 6.00 m/s when it has traveled 40.0 m. (a) What is the pucks acceleration? (b) At what velocity is it traveling after 2.00 s? (c) How long does it take to travel 40.0 m? (See Section 2.5.)arrow_forwardA motorist drives for 35.0 minutes at 85.0 km/h and then stops for 15.0 minutes. He then continues north, traveling 130. Km in 2.00 h. (a) What is his total displacement? (b) What is his average velocity?arrow_forward5. A car with an initial velocity of 9_ m/s, accelerates at a constant rate of 3.6 m/s?. a. How much time is required for it to travel 300 meters? b. What is its velocity (in m/s) upon reaching 300 meters?arrow_forward
- A man walks 7km north in 2 houra and 2km in 1 hour in the same direction. a. What is the man's average speed for the whole journey? b. What is the man's average velocity for the whole journey?arrow_forward1. A vehicle drives at a constant speed of 215km/h for 42.3 seconds, accelerates by 29.4m/s2 for 5.00s. And finally, slows down to the stop. The entire movement takes 88.6 seconds. A. Make a vector-speed diagram or graph as a function of time for the situation. B. Determine the maximum speed. C. Determine the total displacement. 2. Two 9.82km separate trains travel on parallel tracks in opposite directions, one to the other. Train A has a speed of 5.87 km/h at departure and accelerates at a rate of 0.29m/s2. Train B has a speed of 20.3m/s at departure and an acceleration of 0.69m/s2. A. Make a diagram or graph position according to time for the situation. B. Determine when trains meet.arrow_forwardP3arrow_forward
- Full formula Correct Correct Correct values answer, metric units inserted into rounded to the formula two decimal from the places word problemarrow_forwardA motorboat starting from rest on a straight travels in straight line on a lake. A. If the boat achieves a speed of 8.0 m/s in 10s,what is the boats average acceleration? B. Then, in 5.0 more seconds, the boats speed is 12m/s. What is the boats average acceleration for the total time?arrow_forward2. The graph shows the x-velocity of a very slow industrial robot as a function of time. a. What is the x-acceleration at t = 5 s? b. What is the x-acceleration at t = 20 s? c. That is c. What is the x-acceleration at t = 27 s? Vx (cm/s) 60 40 20 0 -20 -40 0 x-velocity vs. time 5 10 15 20 25 30 time (sec) d. During the first interval from 0 to 10 s, the acceleration is constant, and we know that x = x + VoxAt + ax(At)² while vx = Vox + ax^t. Here x, and vox are the x-position and x-velocity at the beginning of the constant acceleration interval and At is the time from the beginning of the constant acceleration interval. i. Write an expression for the x-position as a function of time t for the first interval, i.e., for 0 < t < 10 s. Your expression should only contain the variablet and the correct values (with units) of the constants xo, Vox, and a. Assume x = 0 at t = 0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY