Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 34EAP
A particle moving along the x-axis has its velocity described by the function vx= 2t2m/s, where t is in s. Its initial position is x0= 1 m at t0= 0 s. At t = 1 s what are the particle’s (a) position, (b) velocity, and (c) acceleration?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle moving along the x-axis has its velocity described by the function
v_x =2t2m/s=2t^2m/s, where t is in s. Its initial position is x_0 = 2.8 mm at t_0 = 0 s .
At 1.7 s , what is the particle's position?
At 1.7 s , what is the particle's velocity?
At 1.7 s , what is the particle's acceleration?
A particle is moving along a straight line such that its acceleration is defined as a(v)= -6v m/s2, where x is the displacement in meters. When t = 0 seconds, x = 4 m and v = 18 m/s. Determine the velocity of the particle at x = 5meters.
the acceleration a versus time t for a particle moving along an x axis. the a-axis scale is set by as = 12 m/s2. at t = -2.0 s, the particles velocity is 7.0 m/s. what is its velocity at t = 6 s?
Chapter 2 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - FIGURE Q2.4 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.5 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.6 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.7 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.8 shows six frames from the motion...Ch. 2 - You’re driving along the highway at a steady speed...Ch. 2 - A bicycle is traveling east. Can its acceleration...
Ch. 2 - (a) Give an example of a vertical motion with a...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight do from a...Ch. 2 - FIGURE Q2.14 shows the velocity-versus-time graph...Ch. 2 - Alan leaves Los Angeles at 8:00 A.M. to drive to...Ch. 2 - Julie drives 100 mi to Grandmother’s house. On the...Ch. 2 - Larry leaves home at 9:05 and runs at constant...Ch. 2 - FIGURE EX2.4 is the position-versus-time graph of...Ch. 2 - FIGURE EX2.5 shows the position graph of a...Ch. 2 - A particle starts from x0=10matt=0s and moves with...Ch. 2 - FIGURE EX2.7 is a somewhat idealized graph of the...Ch. 2 - FIGURE EX2.8 shows the velocity graph for a...Ch. 2 - FIGURE EX2.9 shows the velocity graph of a...Ch. 2 - FIGURE EX2.7 showed the velocity graph of blood in...Ch. 2 - Prob. 11EAPCh. 2 - FIGURE EX2.1 2 shows the velocity-versus-time...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - A jet plane is cruising at 300 m/s when suddenly...Ch. 2 - a. How many days will it take a spaceship to...Ch. 2 - Prob. 16EAPCh. 2 - A speed skater moving to the left across...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - Acar starts from rest at a stop sign. It...Ch. 2 - Prob. 20EAPCh. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up from ground level...Ch. 2 - 23. When jumping, a flea accelerates at an...Ch. 2 - Prob. 24EAPCh. 2 - A rock is dropped from the top of a tall building....Ch. 2 - A skier is gliding along at 3.0 m/s on horizontal,...Ch. 2 - A car traveling at 30 m/s runs out of gas while...Ch. 2 - Prob. 28EAPCh. 2 - A snowboarder glides down a 50-m-long, 15° hill....Ch. 2 - A small child gives a plastic frog a big push at...Ch. 2 - FIGURE EX2.31 shows the acceleration-versus-time...Ch. 2 - Prob. 32EAPCh. 2 - A particle moving along the x-axis has its...Ch. 2 - A particle moving along the x-axis has its...Ch. 2 - The position of a particle is given by the...Ch. 2 - The position of a particle is given by the...Ch. 2 - Particles A. B. and C move along the x-axis....Ch. 2 - A block is suspended from a spring, pulled down,...Ch. 2 - A particle’s velocity is described by the function...Ch. 2 - Prob. 40EAPCh. 2 - Prob. 41EAPCh. 2 - A particles velocity is given by the function vx=...Ch. 2 - A ball rolls along the smooth track shown in...Ch. 2 - Draw position, velocity, and acceleration graphs...Ch. 2 - FIGURE P2.45 shows a set of kinematic graphs for a...Ch. 2 - FIGURE P2.46 shows a set of kinematic graphs for a...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - You’re driving down the highway late one night at...Ch. 2 - Two cars are driving at the same constant speed on...Ch. 2 - You are playing miniature golf at the golf course...Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A cheetah spots a Thomson’s gazelle, its preferred...Ch. 2 - You are at a train station, standing next to the...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A 1000 kg weather rocket is launched straight up....Ch. 2 - A lead ball is dropped into a lake from a diving...Ch. 2 - A hotel elevator ascends 200 m with a maximum...Ch. 2 - A basketball player can jump to a height of 55 cm....Ch. 2 - You are 9.0 m from the door of your bus, behind...Ch. 2 - Ann and Carol are driving their cars along the...Ch. 2 - Amir starts riding his bike up a 200-m-long slope...Ch. 2 - A very slippery block of ice slides down a smooth...Ch. 2 - Bob is driving the getaway car after the big bank...Ch. 2 - One game at the amusement park has you push a puck...Ch. 2 - A motorist is driving at 20 m/s when she sees that...Ch. 2 - Nicole throws a ball straight up. Chad watches the...Ch. 2 - David is driving a steady 30 m/s when he passes...Ch. 2 - A cat is sleeping on the floor in the middle of a...Ch. 2 - Water drops fall from the edge of a roof at a...Ch. 2 - I was driving along at 20 m/s, trying to change a...Ch. 2 - As an astronaut visiting Planet X, you’re assigned...Ch. 2 - Your goal in laboratory is to launch a ball of...Ch. 2 - When a 1984 Alfa Romeo Spider sports car...Ch. 2 - The two masses in FIGURE P2.75 slide on...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Careful measurements have been made of Olympic...Ch. 2 - III Careful measurements have been made of Olympic...Ch. 2 - A sprinter can accelerate with constant...Ch. 2 - A rubber ball is shot straight up from the ground...Ch. 2 - The Starship Enterprise returns from warp drive to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- We are standing on the top of a 1040 feet tall building and launch a small object upward. The object's height, measured in feet, after t seconds is h(t) = 16t? + 128t + 1040. A) What is the object initial velocity? ft/second B) What is the highest point that the object reaches? feetarrow_forwardA particle’s velocity is given by the function vx = (6.0 m/s)sin(9.0πt), where t is in s. What is the particle’s acceleration at time after t = 0.0 s, when the particle reaches a turning point?arrow_forwarda particle is moving along a straight such that its acceleration is defined as v^2=k/x m/s, where k is a constant and x is the displacement in meters. when t=0 seconds, x= 4m and v=18m/s. if the particle attains a velocity magnitude of 2m/s when its position coordinate is 9 meters at time t=0. determine the speed after 3 secondsarrow_forward
- The figure(Figure 1) shows the velocity graph of a particle moving along the x-axis. Its initial position is x0=2m t0= 0. At t = 3s , what are the particle's (a) position, (b) velocity, and (c) acceleration?arrow_forwardAt time t=0.0s a particle is located at x = 4.0 m and y = 1.0 m. The particle has an initial velocity at t=0.0 s given by: v=6.0m/si-2.0m/sj The particle experiences a constant acceleration beginning at t=0.0s that can be described by a = -2.0m/s² i +5.0m/s23 +3.0m/s² k (A) On coordinate axes (x and y) show the particle initial position and draw a vector which indicates the initial velocity of the particle. (B) If we want to determine the position of the particle at a later time t, which physics approach or equation(s) might we use to do so? (C) Find the position of the particle at t=4.0 s. Express your result in terms of the position vector in and j and k notation.arrow_forwardA particle moving along the x-axis has its velocity described by the function vxvxv_x =2t2m/s=2t2m/s, where tt is in ss. Its initial position is x0x0x_0 = 2.2 mm at t0t0 = 0 ss . At 1.4 ss , what is the particle's position? At 1.4 ss , what is the particle's velocity? At 1.4 ss , what is the particle's acceleration?arrow_forward
- A particle moves along the x-axis. The function v(t) gives the particle's velocity at any time t> 0: Assume x to be in meters and t to be in seconds. v(t) = t5 +15t³ +20 Find: a. The velocity of the particle at t= 2s. b. The acceleration of the particle at t=2s c. Att=3, is the particle speeding up, slowing down, or neither?arrow_forwardA particle moving along the x-axis has its position described by the function x =( 5.00 t^3-5.00t+t+ 1.00 )m, where t is in s. At t= 4.00, what are the particle's (a) position, (b) velocity, and (c) acceleration?arrow_forwardA particle moving along an x axis has an acceleration of 15.0 m/s2. At t = -2.0 s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s?arrow_forward
- The graph is a particle's position along x axis versus time. What are the signs of the particle's velocity at t=0, 1, 2, and 3 s. t (s) 0,+,0,+ -„0,+,0 -,0,+,+ +,+,0,- O ,0,+arrow_forwardA particle moves along the +ve direction of x-axis. Its position x depends on time t as x=at3+bt2+c+d. Let dx/dt represent instantaneous velocity d2x/dt2 represents instantaneous acceleration (α) of the particle.The average acc. of the particle is defined as <α> =∫αdt/dt. Find the average acc. in time interval t=0 to t=1s.arrow_forwardA particle’s velocity along the x-axis is described byv(t) = A t + B t2,where t is in seconds, v is in meters per second, A = 1.14 m/s2, and B = -0.56 m/s3. What is the acceleration, in meters per second squared, of the particle at time t0 = 1.0 s? What is the displacement, in meters, of the particle between times t0 = 1.0 s and t1 = 3.0 s? What is the distance traveled, in meters, by the particle between times t0 = 1.0 s and t1 = 3.0 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY