Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 78P
SAE 30 oil at 100°C flows through a 12-mm-diameter stainless-steel tube. What is the specific gravity and specific weight of the oil? If the oil discharged from the tube fills a 100-mL graduated cylinder in 9 seconds, is the flow laminar or turbulent?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answer the problem correctly and provide complete and readable solutions. If you can explain the process (briefly), please do so. Thank you!
A liquid of viscosity 5.2x10-5 Ibf-sec/ft? is flowing in a rectangular duct. The equation of the symmetrical velocity (in ft/s) is
approximately V=0.3y0./ ft/s where y is in inches. Compute the shear stress of the fluid at y=3 inches from the wall.
answer the first question
Chapter 2 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 2 - For the velocity fields given below, determine:...Ch. 2 - For the velocity fields given below, determine:...Ch. 2 - A viscous liquid is sheared between two parallel...Ch. 2 - For the velocity field V=Ax2yi+Bxy2j, where A = 2...Ch. 2 - A fluid flow has the following velocity...Ch. 2 - When an incompressible, nonviscous fluid flows...Ch. 2 - For the free vortex flow the velocities are t =...Ch. 2 - For the forced vortex flow the velocities are t =...Ch. 2 - A velocity field is specified as V=axyi+by2j,...Ch. 2 - A velocity field is given by V=ax3i+bxy3j, where a...
Ch. 2 - The velocity for a steady, incompressible flow in...Ch. 2 - The flow field for an atmospheric flow is given by...Ch. 2 - For the velocity field V=AxiAyj,, where A = 2s 1....Ch. 2 - A velocity field in polar coordinates is given...Ch. 2 - The flow of air near the Earths surface is...Ch. 2 - A velocity field is given by V=aytibxj, where a =...Ch. 2 - Air flows downward toward an infinitely wide...Ch. 2 - Consider the flow described by the velocity field...Ch. 2 - Consider the velocity field V = axi + by(1 + ct)...Ch. 2 - Consider the flow field given in Eulerian...Ch. 2 - A velocity field is given by V=axti+byj, where A =...Ch. 2 - Consider the garden hose of Fig. 2.5. Suppose the...Ch. 2 - Consider the velocity field of Problem 2.18. Plot...Ch. 2 - Streaklines are traced out by neutrally buoyant...Ch. 2 - Consider the flow field V=axti+bj, where a = 1/s2...Ch. 2 - A flow is described by velocity field V=ay2i+bj,...Ch. 2 - Tiny hydrogen bubbles are being used as tracers to...Ch. 2 - A flow is described by velocity field V=ai+bxj,...Ch. 2 - A flow is described by velocity field V=ayi+btj,...Ch. 2 - A flow is described by velocity field V=ati+bj,...Ch. 2 - The variation with temperature of the viscosity of...Ch. 2 - The variation with temperature of the viscosity of...Ch. 2 - Some experimental data for the viscosity of helium...Ch. 2 - The velocity distribution for laminar flow between...Ch. 2 - What is the ratio between the viscosities of air...Ch. 2 - Calculate velocity gradients and shear stress for...Ch. 2 - A very large thin plate is centered in a gap of...Ch. 2 - A female freestyle ice skater, weighing 100 lbf,...Ch. 2 - A block of mass 10 kg and measuring 250 mm on each...Ch. 2 - A 73-mm-diameter aluminum (SG = 2.64) piston of...Ch. 2 - A vertical gap 25 mm wide of infinite extent...Ch. 2 - A cylinder 8 in. in diameter and 3 ft long is...Ch. 2 - Crude oil at 20C fills the space between two...Ch. 2 - The piston in Problem 2.40 is traveling at...Ch. 2 - A block of mass M slides on a thin film of oil....Ch. 2 - A block 0.1 m square, with 5 kg mass, slides down...Ch. 2 - A torque of 4 N m is required to rotate the...Ch. 2 - A circular disk of diameter d is slowly rotated in...Ch. 2 - The fluid drive shown transmits a torque T for...Ch. 2 - A block that is a mm square slides across a flat...Ch. 2 - In a food-processing plant, honey is pumped...Ch. 2 - SAE 10W-30 oil at 100C is pumped through a tube L...Ch. 2 - The lubricant has a kinematic viscosity of 2:8105...Ch. 2 - Calculate the approximate viscosity of the oil....Ch. 2 - Calculate the approximate power lost in friction...Ch. 2 - Fluids of viscosities 1 = 0.1 Ns/m2 and 2 = 0.15...Ch. 2 - A concentric cylinder viscometer may be formed by...Ch. 2 - A concentric cylinder viscometer is driven by a...Ch. 2 - A shaft with outside diameter of 18 mm turns at 20...Ch. 2 - A shock-free coupling for a low-power mechanical...Ch. 2 - A proposal has been made to use a pair of parallel...Ch. 2 - The cone and plate viscometer shown is an...Ch. 2 - A viscometer is used to measure the viscosity of a...Ch. 2 - A concentric-cylinder viscometer is shown. Viscous...Ch. 2 - Design a concentric-cylinder viscometer to measure...Ch. 2 - A cross section of a rotating bearing is shown....Ch. 2 - Small gas bubbles form in soda when a bottle or...Ch. 2 - You intend to gently place several steel needles...Ch. 2 - According to Folsom [6], the capillary rise h...Ch. 2 - Calculate and plot the maximum capillary rise of...Ch. 2 - Calculate the maximum capillary rise of water...Ch. 2 - Calculate the maximum capillary depression of...Ch. 2 - Water usually is assumed to be incompressible when...Ch. 2 - The viscous boundary layer velocity profile shown...Ch. 2 - In a food industry process, carbon tetrachloride...Ch. 2 - What is the Reynolds number of water at 20C...Ch. 2 - A supersonic aircraft travels at 2700 km/hr at an...Ch. 2 - SAE 30 oil at 100C flows through a 12-mm-diameter...Ch. 2 - A seaplane is flying at 100 mph through air at...Ch. 2 - An airliner is cruising at an altitude of 5.5 km...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
A healing contractor must heat 0.2kg/s of water from 15C to 35C using hot gases in cross flow over a thin walle...
Fundamentals of Heat and Mass Transfer
The column is constructed from high-strength concrete and eight A992 steel reinforcing rods. If the column is s...
Mechanics of Materials (10th Edition)
Three rigid bodies, 2,3, and 4, are connected by four springs as shown in the figure. A horizontal force of 1,0...
Introduction To Finite Element Analysis And Design
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- answer the 2nd questionarrow_forwardThe ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 8 m3/hour. The length of the pipe is 35m and there are 2 elbows. Calculate the pump power requirement. The properties of the solution are density 975 kg/m3 and viscosity 4x 10-4 Pa s. a. Reynolds number = b. Energy Loss along a straight pipe = J/kg. c. Energy Loss in turns = J/kg. d. Total energy to overcome friction = J/kg. e. Energy to raise water to height = J/kg. f. Theoretical energy requirement of the pump kg ethanol/second = J/kg. g. Actual pump power requirement = watt.arrow_forwardThe ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 10 m3 / hr. The pipe length is 35m and there are 2 elbows. Calculate the power requirements of the pump. The properties of the solution are density 975 kg / m3 and viscosity 4x 10-4 Pa s. a. Reynold number = Answer b. Loss of Energy along the straight pipe = Answer J / kg. c. Losing Energy at curves = Answer J / kg. d. Total energy to overcome friction = Answer J / kg. e. Energy to increase water according to height = Answer J / kg. f. The theoretical energy requirement of the pump ethanol / second = Answer J / kg. g. Actual pump power requirement = Answer watt.arrow_forward
- Hi. Kindly assist with this Fluid Mechanics question.Please answer correctly and show all the stepsarrow_forwardYou have a container like the one shown in figure 1 from which you want to extract liquid with the help of asiphon (inverted U-shaped tube). The siphon should be filled initially, but once this is done theliquid will flow until its level drops below opening A. The liquid has a density ?, and anegligible viscosity. Assume that the area of the container is very large compared to the area of thetube and that both the tube at C and the container itself at D are open to the atmosphere. a) Using Bernoulli's equation and comparing points "D" and "C", determine the speed with which the liquid flows in C. b) What is the gauge pressure of the liquid at the highest point (B)? c) What maximum height H can the highest point (B) of the tube have without ceasing to have flow? d) If the liquid of density ? is changed, for one with density ?2 where ? < ?2, will there be any change in velocity at C? If there is any change, write down with which liquid the highest speed is obtained in C, otherwise…arrow_forward4. A crude oil of viscosity 0.9 poise and sp. gr. 0.8 is flowing through a horizontal circular pipe of diameter 80 mm and of length 15 m. Calculate the difference of pressure at the two ends of the pipe, if 50 kg of the oil is collected in a tank in 15 seconds.arrow_forward
- What is the rise of water in glass capillary tube having radius 0.5 mm and surface tension as 0.1 N/m^2 Assume contact angle of water and glass is 0 degreearrow_forwardFast plzarrow_forward1. Corn syrup enters a 4-ft-diameter, horizontal plastic pipe at a velocity of 3 ft/s and pressure of 15.23 psig. The pipe has a total length of 30 ft. The absolute viscosity of corn syrup is 2000 cP and its density is 86.15 lb/ft³. Calculate the head loss in the pipe in feet. Take the local gravitational acceleration to be 32.2 ft/s².arrow_forward
- 2. Castor oil flows through a pipe that has a cross-section of an equilateral triangle with a side length of 10 cm. The volume flow rate of the oil was measured to be 1.2 liters/second. The absolute viscosity of castor oil is about 650 cP. Calculate the Reynolds number and identify the type of flow.arrow_forwardAt a certain temperature, water rises inside 0.10in diameter capillary tube. How high will it rise if the wetting angle is zero and the surface tension is 0.005 lb/ft? Select the correct response: O 0.832 in 0.654 in O 0.426 in O 0.232 inarrow_forwardA tube length of 40 cm and a radius of 5 cm passes through the liquid. the viscosity coefficient is 0.8 pois, if the pressure causing the flow is 5 kpa and the pressure in the other side of the tube is 1 kpa calculate 1-the flow velocity at the center of the tube (r=o) 2-the flow velocity at the tube well. (r = R) 3- the velocity of the flow at a point (3 cm) away from the center (r = 3 cm).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License