Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 42P
A cylinder 8 in. in diameter and 3 ft long is concentric with a pipe of 8.25 in. i.d. Between cylinder and pipe there is an oil film. What force is required to move the cylinder along the pipe at a constant velocity of 3 fps? The kinematic viscosity of the oil is 0:006 ft2/s; the specific gravity is 0.92.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
fast please
Shaft (250 mm diameter) rotates at 250 rpm inside a sleeve (251 mm diameter)
with a constant clearance. If the power required to rotate the shaft is 2204 watts,
find the viscosity (N.sec/m) of lubricant oil in the clearance. Take length of
sleeve as 150 mm.
Your answer
A shaft with a 25 mm radius is pushed at 300 mm/s inside a 25.5 mm radius bearing sleeve with a 230 mm length. Between them, a 0.003m2/s - kinematic viscosity oil has been poured to fill the space. It has a specific gravity of 0.8. How much force does the oil exert on the shaft?
Chapter 2 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 2 - For the velocity fields given below, determine:...Ch. 2 - For the velocity fields given below, determine:...Ch. 2 - A viscous liquid is sheared between two parallel...Ch. 2 - For the velocity field V=Ax2yi+Bxy2j, where A = 2...Ch. 2 - A fluid flow has the following velocity...Ch. 2 - When an incompressible, nonviscous fluid flows...Ch. 2 - For the free vortex flow the velocities are t =...Ch. 2 - For the forced vortex flow the velocities are t =...Ch. 2 - A velocity field is specified as V=axyi+by2j,...Ch. 2 - A velocity field is given by V=ax3i+bxy3j, where a...
Ch. 2 - The velocity for a steady, incompressible flow in...Ch. 2 - The flow field for an atmospheric flow is given by...Ch. 2 - For the velocity field V=AxiAyj,, where A = 2s 1....Ch. 2 - A velocity field in polar coordinates is given...Ch. 2 - The flow of air near the Earths surface is...Ch. 2 - A velocity field is given by V=aytibxj, where a =...Ch. 2 - Air flows downward toward an infinitely wide...Ch. 2 - Consider the flow described by the velocity field...Ch. 2 - Consider the velocity field V = axi + by(1 + ct)...Ch. 2 - Consider the flow field given in Eulerian...Ch. 2 - A velocity field is given by V=axti+byj, where A =...Ch. 2 - Consider the garden hose of Fig. 2.5. Suppose the...Ch. 2 - Consider the velocity field of Problem 2.18. Plot...Ch. 2 - Streaklines are traced out by neutrally buoyant...Ch. 2 - Consider the flow field V=axti+bj, where a = 1/s2...Ch. 2 - A flow is described by velocity field V=ay2i+bj,...Ch. 2 - Tiny hydrogen bubbles are being used as tracers to...Ch. 2 - A flow is described by velocity field V=ai+bxj,...Ch. 2 - A flow is described by velocity field V=ayi+btj,...Ch. 2 - A flow is described by velocity field V=ati+bj,...Ch. 2 - The variation with temperature of the viscosity of...Ch. 2 - The variation with temperature of the viscosity of...Ch. 2 - Some experimental data for the viscosity of helium...Ch. 2 - The velocity distribution for laminar flow between...Ch. 2 - What is the ratio between the viscosities of air...Ch. 2 - Calculate velocity gradients and shear stress for...Ch. 2 - A very large thin plate is centered in a gap of...Ch. 2 - A female freestyle ice skater, weighing 100 lbf,...Ch. 2 - A block of mass 10 kg and measuring 250 mm on each...Ch. 2 - A 73-mm-diameter aluminum (SG = 2.64) piston of...Ch. 2 - A vertical gap 25 mm wide of infinite extent...Ch. 2 - A cylinder 8 in. in diameter and 3 ft long is...Ch. 2 - Crude oil at 20C fills the space between two...Ch. 2 - The piston in Problem 2.40 is traveling at...Ch. 2 - A block of mass M slides on a thin film of oil....Ch. 2 - A block 0.1 m square, with 5 kg mass, slides down...Ch. 2 - A torque of 4 N m is required to rotate the...Ch. 2 - A circular disk of diameter d is slowly rotated in...Ch. 2 - The fluid drive shown transmits a torque T for...Ch. 2 - A block that is a mm square slides across a flat...Ch. 2 - In a food-processing plant, honey is pumped...Ch. 2 - SAE 10W-30 oil at 100C is pumped through a tube L...Ch. 2 - The lubricant has a kinematic viscosity of 2:8105...Ch. 2 - Calculate the approximate viscosity of the oil....Ch. 2 - Calculate the approximate power lost in friction...Ch. 2 - Fluids of viscosities 1 = 0.1 Ns/m2 and 2 = 0.15...Ch. 2 - A concentric cylinder viscometer may be formed by...Ch. 2 - A concentric cylinder viscometer is driven by a...Ch. 2 - A shaft with outside diameter of 18 mm turns at 20...Ch. 2 - A shock-free coupling for a low-power mechanical...Ch. 2 - A proposal has been made to use a pair of parallel...Ch. 2 - The cone and plate viscometer shown is an...Ch. 2 - A viscometer is used to measure the viscosity of a...Ch. 2 - A concentric-cylinder viscometer is shown. Viscous...Ch. 2 - Design a concentric-cylinder viscometer to measure...Ch. 2 - A cross section of a rotating bearing is shown....Ch. 2 - Small gas bubbles form in soda when a bottle or...Ch. 2 - You intend to gently place several steel needles...Ch. 2 - According to Folsom [6], the capillary rise h...Ch. 2 - Calculate and plot the maximum capillary rise of...Ch. 2 - Calculate the maximum capillary rise of water...Ch. 2 - Calculate the maximum capillary depression of...Ch. 2 - Water usually is assumed to be incompressible when...Ch. 2 - The viscous boundary layer velocity profile shown...Ch. 2 - In a food industry process, carbon tetrachloride...Ch. 2 - What is the Reynolds number of water at 20C...Ch. 2 - A supersonic aircraft travels at 2700 km/hr at an...Ch. 2 - SAE 30 oil at 100C flows through a 12-mm-diameter...Ch. 2 - A seaplane is flying at 100 mph through air at...Ch. 2 - An airliner is cruising at an altitude of 5.5 km...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
The 60-mm-diameter steel shaft is subjected to the torques shown. Determine the angle of twist of end A with re...
Statics and Mechanics of Materials (5th Edition)
The beam AB has a moment of inertia I = 475 in4 and rests on the smooth supports at its ends. A 0.75-in.-diamet...
Mechanics of Materials (10th Edition)
The impulses created by a falling weight onto a sample of URETHANE foam and CONFOR foam.
Engineering Mechanics: Statics & Dynamics (14th Edition)
Modified coefficient of performance and power input for clean condition.
Introduction to Heat Transfer
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A square block has 320 mm bottom sides dimensions, weighing W is 1.4 kN on an edge slides down an incline angle 0 is 20° on a film of oil 6 mm thickness, as shown below. Assuming a linear velocity profile in the oil. The viscosity of the oil is 0.009 Pa.s. W y Determine the force acting on the block, F. What is the velocity of the block, V?arrow_forwardi need the answer quicklyarrow_forwardQ1 A smooth cylinder of 50.1 mm inside diameter and 150 a long is placed with its axis vertical. If the clear- ance space is entirely filled with oil of viscosity 2.5 poise, calculate the force to push a shaft 50 mm diameter through the cylinder with a velocityof 0.8 m/sec.arrow_forward
- What formula do I use? A cylinder of diameter 122 mm and length of 200mm is placed inside a concentric long pipe of diameter 125 mm. An oil film is introduced in the gap between the pipe and the cylinder. What force is necessary to move the cylinder at a a velocity of 1 m/s? assume that the dynamic viscosity of oil is 30 cSt and the specific gravity is 0.9.arrow_forwardfast pleasearrow_forwardالواجب الثاني خواص الموائع ثاني طرق Exl: The density of an oil is 850 kg/m³. Find the relative density and kinematic viscosity if the dynamic viscosity is 5*103 pa.s.arrow_forward
- A plunger (54 mm Ø and 0.5 m long) is moving through a horizontal cylinder (60 mm Ø) containing oil at a speed of 8 m/sec that has a viscosity of 7.1x10-6 m2/sec and specific gravity of 0.84. Calculate the force needed to maintain its velocity. Use 2 decimal places.arrow_forwardQ1/ A 120 mm disc rotates on a table separated by an oil film of 1.8 mm thickness. Find the viscosity of oil if the torque required to rotate the disc at 60 r.p.m is 3.6 x 10 N.m. Assume the velocity gradient in the oil film to be linear = 0.0506 poise. N-60 r.p.m. Dise 18 mm R- Oil film (1= dy) 120 mm Table Figure (1) Q2/ The pressure in a natural gas pipeline is measured by a double U-tube manometer with one of the arms open to the atmosphere. The absolute pressure in the pipeline is to be determined if h-0.7 m, h-0.4 m, and h- 1.0 m. Take the densities of water, oil, and mercury to be 1000 kg/m', 840 kg/m', and 13,600 kg/m', respectively. Water Natural Nrcury (1-1)arrow_forwardShaft (250 mm diameter) rotates at 250 rpm inside a sleeve (251 mm diameter) with a constant clearance. If the power required to rotate the shaft is 2204 watts, find the viscosity (N.sec/m?) of lubricant oil in the clearance. Take length of sleeve as 150 mm.arrow_forward
- Please solve it quicklyarrow_forwardplz help me with this one , i would appreciate it if you can help me now. A piston with a diameter of 0.8 m and width of L=0.6 m rotates with 6 rad/s inside a cylinder that has a diameter of 1 m that filled with oil that has a viscosity of 8x10-3 N.s/m2 What is the shear force that acts on the circumference of the piston (N)? Assume the variation in velocity of the oil is linear.arrow_forwardThe picture below depicts a system for delivering chocolate ganache in liquid form. Thenozzle on the end of the hose requires 140 kPa of pressure to operate effectively. Thehose is smooth plastic with an ID of 25 mm. The chocolate has a specific gravity of 1.1and a dynamic viscosity of 2.0 X 10-3 Pa*s. If the length of the hose is 85 m and there is a change in height of 10 m, determine(a) the power delivered by the pump to the ganache and(b) the pressure at the outlet of the pump.Neglect the energy losses on the suction side of the pump. The flow rate is 85 L/min.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License