Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 67AP
An elevator moves downward in a tall building at a constant speed of 5.00 m/s. Exactly 5.00 s after the top of the elevator car passes a bolt loosely attached to the wall of the elevator shaft, the bolt falls from rest. (a) At what time does the bolt hit the top of the still-descending elevator? (b) In what way is this problem similar to Example 2.8? (c) Estimate the highest floor from which the bolt can fall if the elevator reaches the ground floor before the bolt hits the top of the elevator.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are on the roof of the physics building, 46.0 m above the ground (Fig.). Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s. If you wish to drop an egg on your professor’s head, where should the professor be when you release the egg? Assume that the egg is in free fall.
An attacker at the base of a castle wall 3.65 m high throws a rock straight up with speed 7.40 m/s at a height of 1.55 m above the ground. (a) Will the rock reach the top of the wall? (b) If so, what is the rock’s speed at the top? If not, what initial speed must the rock have to reach the top? (c) Find the change in the speed of a rock thrown straight down from the top of the wall at an initial speed of 7.40 m/s and moving between the same two points. (d) Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upward between the same elevations? Explain physically why or why not.
You are on the roof of the physics building, 46.0 m above the ground. Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s.
(a) If you wish to drop an egg on your professor's head, how far from the building should the professor be when you release the egg? Assume that the egg is in free fall.
(b) What is the impact velocity of the egg on the professor’s head?
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a grey squirrel falling from a tree to the ground. Use a coordinate system in which positive is downward for this problem. a) Find the squirrel’s velocity, in meters per second, just before hitting the ground when it falls from a height of 1.3 m. Ignore air resistance. b) The squirrel softens its landing by bending its legs when it touches the ground, thereby stopping itself over a distance of 7.6 cm. Assuming a constant rate of deceleration, find the squirrel’s acceleration during this process, in meters per second squared.arrow_forwardA girl standing on a bridge throws a stone vertically downward with an initial velocity of 15.0 m/s into the river below. If the stone hits the water 2.00 seconds later, what is the height of the bridge above the water?arrow_forwardThe basketball bounces straight back up off the ground and reaches a maximum height of 4.00m. a)With what speed did the ball leave the ground? (It is perfectly natural for this to be less than the speed it had before it hit the ground.) The basketball hoop is 3.05 m above the ground. The ball will pass the position of the hoop twice –once on the way up and a second time on the way down. b)Determine the ball's velocity (magnitude and direction) as it reaches the height of the hoop on its way down.arrow_forward
- A rescue helicopter is hovering over a person whose sailboat has capsized. One of the rescuers tosses a life preserver straight down to the person with an initial speed of 1.25 m/s and observes that it takes 1.75 s to reach the water. How high above the water was the preserver released? Note that the downdraft of the helicopter reduces the effect of air resistance on the falling life preserver, so that an acceleration equal to that due to gravity is reasonable.arrow_forwardA ball is thrown vertically upward with a speed of 15.0 m/s. (a) How high does it rise? (b) How long does it take to reach its highest point? (c) How long does the ball take to hit the ground after it reaches its highest point? (d) What is its velocity when it returns to the level from which it started? please answer darrow_forwardA kangaroo leaps upward at time t = 0. At time t = 1.0 s it is at a height of 2.0 m above the ground. At what time does it reach its maximum height? Express your answer in seconds. (Assume proximity to the Earth's surface and neglect friction).arrow_forward
- A hot-air balloon of diameter 12 m rises vertically at a constant speed of 15 m/s . A passenger accidentally drops his camera from the railing of the basket when it is 15 m above the ground. If the balloon continues to rise at the same speed, how high is the railing when the camera hits the ground?arrow_forwardYou throw two balls directly downwards from a height of 90 m, 3.0 s apart. You throw the first ball at a speed of 8.0 m/s. (a) At what speed must you throw the second ball if it is to reach the ground with the same speed as the first ball? (b) At what speed must you throw the second ball if it is to reach the ground at the same time as the first ball?arrow_forwardA student walks off the top of the CN Tower in Toronto, which has height 553 mm and falls freely. His initial velocity is zero. The Rocketeer arrives at the scene a time of 5.50 ss later and dives off the top of the tower to save the student. The Rocketeer leaves the roof with an initial downward speed v0v0. In order both to catch the student and to prevent injury to him, the Rocketeer should catch the student at a sufficiently great height above ground so that the Rocketeer and the student slow down and arrive at the ground with zero velocity. The upward acceleration that accomplishes this is provided by the Rocketeer's jet pack, which he turns on just as he catches the student; before then the Rocketeer is in free fall. To prevent discomfort to the student, the magnitude of the acceleration of the Rocketeer and the student as they move downward together should be no more than five times gg. 1)What is the minimum height above the ground at which the Rocketeer should catch the student?…arrow_forward
- While riding on an elevator descending with a constant speed of 2.6 m/s, you accidentally drop a book from under your arm.A)How long does it take for the book to reach the elevator floor, 1.1 m below your arm? (Already answered it's 0.47s)B)What is the book's speed relative to you when it hits the elevator floor?arrow_forwardA ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof a time of 1.12 s later. You may ignore air resistance. If the height of the building is 20.4 m, what must the initial speed be of the first ball if both are to hit the ground at the same time? Consider the same situation, but now let the initial speed v0 of the first ball be given and treat the height h of the building as an unknown. What must the height of the building be for both balls to reach the ground at the same time for v0 = 8.50 m/s. If v0 is greater than some value vmax, a value of h does not exist that allows both balls to hit the ground at the same time. Solve for vmax. If v0 is less than some value vmin, a value of h does not exist that allows both balls to hit the ground at the same time. Solve for vmin.arrow_forwardA person stands at the edge of a deck that is 40.0 m above the ground and throws a rock straight up that reaches a height of 15 m above the deck. a) With what velocity was it thrown? b)The rock mises the deck on the way down. With what velocity does it hit the ground?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY