
Concept explainers
(a)
The distance between the nose of car and the south edge when the car stops.
(a)

Answer to Problem 81CP
The distance between the nose of car and the south edge when the car stops is
Explanation of Solution
Write the expression for the final position of the nose of the car.
Here,
The initial position of the car is zero. Put
Write the expression for the final velocity of the car.
Here,
Rearrange expression (III) to find
Conclusion:
Substitute
Since the blue car stops at the intersection, final velocity is zero.
Substitute
Therefore, the distance between the nose of car and the south edge when the car stops is
(b)
The time interval in which the car is in the boundaries of intersection.
(b)

Answer to Problem 81CP
The time in which the car is in the boundaries of intersection is
Explanation of Solution
The time for which the car is in the intersection is the time between the entering of nose and exiting of tail from the intersection. Thus the total distance travelled by the car between the intersections is equal to the sum of length of car and length of the intersection path. Thus the change in position of nose of the car is equal to
Write the expression for the final position of car at time
The car starts from origin, so
Expression (V) is a quadratic equation.
Write the general expression for a quadratic equation in terms of
Here,
Write the expression to find the solution for quadratic equation (VI).
Conclusion:
Substitute
Compare the above quadratic expression with (VI) to obtain the values of constants.
Substitute
Thus the time values are
Therefore, the time in which the car is in the boundaries of intersection is
(c)
The minimum distance from the near edge of intersection where the red car can start its motion after the complete leaving of blue car.
(c)

Answer to Problem 81CP
The minimum distance from the near edge of intersection where the red car can starts its motion after the complete leaving of blue car is
Explanation of Solution
The nose of the blue car enters the intersection at
Again use expression (I) to find the distance between near edge and nose of car.
Conclusion:
Substitute
Therefore, the minimum distance from the near edge of intersection where the red car can starts its motion after the complete leaving of blue car is
(d)
The speed of red car when it enters the intersection.
(d)

Answer to Problem 81CP
The speed of red car when it enters the intersection is
Explanation of Solution
Write the expression to find the velocity of red car.
Conclusion:
Substitute
Therefore, the speed of red car when it enters the intersection is
Want to see more full solutions like this?
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- please help me solve this questions. show all calculations and a good graph too :)arrow_forwardWhat is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forward
- An ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forwardThe outside temperature is 25 °C. A heat engine operates in the environment (Tc = 25 °C) at 50% efficiency. How hot does it need to get the high temperature up to in Celsius?arrow_forwardGas is compressed in a cylinder creating 31 Joules of work on the gas during the isothermal process. How much heat flows from the gas into the cylinder in Joules?arrow_forward
- The heat engine gives 1100 Joules of energy of high temperature from the burning gasoline by exhausting 750 Joules to low-temperature . What is the efficiency of this heat engine in a percentage?arrow_forwardL₁ D₁ L₂ D2 Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length. a) What is the resistance of this wire? R = Hint A potential difference of AV = 1.40 V is applied across the wire. b) What is the magnitude of the current density in the thin part of the wire? Hint J1 = c) What is the magnitude of the current density in the thick part of the wire? J₂ = d) What is the magnitude of the electric field in the thin part of the wire? E1 = Hint e) What is the magnitude of the electric field in the thick part of the wire? E2 =arrow_forwardplease helparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





