Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 56P
(a)
To determine
The speed of luggage dropped in terms of
(b)
To determine
The vertical separation between package and helicopter in terms of
(c)
To determine
Answers for part (a) and (b) on assuming the helicopter is steadily increasing with the same speed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A few seconds after a plane took off it was hit by a missile launched from a distance on the
ground. The path of the plane is described by y= (0.0005 x²) m. The missile traveled along
a parabolic path described by y = (160 x), where the coordinates are measured in meters.
If the components of the missile velocity in the horizontal and vertical directions are
constant at v; =120 m/s and v, = 100 m/s, respectively, and the plane was rising with a
constant upward velocity v, = 12 m/s, determine the magnitudes of the velocity and
acceleration of the plane the moment it was hit by the missile.
y
y = (0.0005 x²)
y? = (160 x)
X
A person walks in the following pattern: 2.2 km north, then 2.9 km west, and finally 4.4 km south. (a) How far and (b) at what angle
(measured counterclockwise from east) would a bird fly in a straight line from the same starting point to the same final point?
(a) Number i 36.4
(b) Number i 52.8
Units
km
Units °(degrees)
A few second after
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hiker walks from (x1, y1) = (4.00 km. 3.00 km) to (x2, y2) = (3.00 km, 6.00 km), (a) What distance has the traveled? (b) The hiker desires to return to his starting point. In what direction should he go? (Give the angle with respect to due cast.) (See Sections 3.2 and 3.3.)arrow_forwardAn engineer designs a roller coaster so that a car travels horizontally for 172 ft, then climbs 147 ft at an angle of 32.0° above the horizontal. It then moves 147 ft at an angle of 48.0° below the horizontal. If we take the initial horizontal motion of the car to be along the +x-axis, what is the car's displacement? (Give the magnitude of your answer, in ft, to at least four significant figures and give the direction of your answer in degrees counterclockwise from the +x-axis.) magnitude 396.267 ft direction 355.463 ° counterclockwise from the +x-axisarrow_forwardAn engineer designs a roller coaster so that a car travels horizontally for 172 ft, then climbs 147 ft at an angle of 32.0° above the horizontal. It then moves 147 ft at an angle of 48.0° below the horizontal. If we take the initial horizontal motion of the car to be along the +x-axis, what is the car's displacement? (Give the magnitude of your answer, in ft, to at least four significant figures and give the direction of your answer in degrees counterclockwise from the +x-axis.) Sig figs Considered.arrow_forward
- A rocket is launched following the path h = 64(3x + 1)2 ,where x is the horizontal distance and h is the vertical distance (height) the rocket has traveled from the launch pad. The vertical speed of the rocket is clocked at 12 mi/sec at a height of 1 mile. Simultaneously, it is noted that the vessel had drifted 5 miles from being directly above the launch pad. Find the horizontal speed of the rocket.arrow_forwardletter d onlyarrow_forwardA rock is thrown upward from level ground in such a way that the maximum height of its flight, ymax, is equal to its horizontal distance d it travels before landing. (a) At what angle theta is the rock thrown? (b) Would your answer to part (a) be different on a different planet? Why? Hint for part (a): Make a sketch. Write out separate equations for vertical and horizontal motion, introducing a time variable. Relate the two equations to solve for theta.arrow_forward
- An engineer designs a roller coaster so that a car travels horizontally for 202 ft, then climbs 137 ft at an angle of 34.0° above the horizontal. It then moves 137 ft at an angle of 40.0° below the horizontal. If we take the initial horizontal motion of the car to be along the +x-axis, what is the car's displacement? (Give the magnitude of your answer, in ft, to at least four significant figures and give the direction of your answer in degrees counterclockwise from the +x-axis.) magnitude ft direction Need Help? Read It counterclockwise from the +x-axisarrow_forwardWhen a rocket reaches an altitude of a meters, it begins to travel along the parabolic path as shown in the figure, where the coordinates are measured in meters. If the component of velocity in the vertical direction is constant at c m/s, determine the magnitudes of the rocket's total velocity and acceleration when it reaches an altitude of h meters. y – a)² = bx am a b h m/s m 40 154 209 93 (input the answers in three decimal places) (a) Velocity = m/s (b) Acceleration = m/s2arrow_forwardThe position r of a particle moving in an xy plane is given by ř seconds. In unit-vector notation, calculate (a) 7, (b) V , and (c) a for t = 3.00 s. (d) What is the angle between the positive direction of the x axis and a line tangent to the particle's path at t = 3.00 s? Give your answer in the range of (-180°; 180°). (4.00r3 – 1.00t)î + (5.00 – 1.00r4)j with 7 in meters and t in (a) Number i i Units (b) Number ît i Units i (c) Number i i Units (d) Number i Unitsarrow_forward
- An engineer designs a roller coaster so that a car travels horizontally for 182 ft, then climbs 117 ft at an angle of 33.0° above the horizontal. It then moves 117 ft at an angle of 44.0° below the horizontal. If we take the initial horizontal motion of the car to be along the +x-axis, what is the car's displacement? (Give the magnitude of your answer, in ft, to at least four significant figures and give the direction of your answer in degrees counterclockwise from the +x-axis.) magnitude ft direction ° counterclockwise from the +x-axis Need Help? Read Itarrow_forwardAn engineer designs a roller coaster so that a car travels horizontally for 182 ft, then climbs 117 ft at an angle of 32.0° above the horizontal. It then moves 117 ft at an angle of 48.0° below the horizontal. If we take the initial horizontal motion of the car to be along the +x-axis, what is the car's displacement? (Give the magnitude of your answer, in ft, to at least four significant figures and give the direction of your answer in degrees counterclockwise from the +x-axis.) Magnitude = ? Direction = 356.5 degrees counterclockwise from the + x-axisarrow_forwardVectors u = −10i + 3j and v = −7i − 9j. What is u − v? a −17i − 6j b 17i + 6j c 3i − 12j d −3i + 12jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY