Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 76AP
(a)
To determine
Average velocity of rock in the time interval between two successive measurements.
(b)
To determine
Draw the velocity –time graph by marking instantaneous velocities at the midpoint of time intervals.
(c)
To determine
Check whether the rock has constant acceleration; plot the straight line of best fit on the graph, and calculate the acceleration.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) You recorded your position with respect to the front door of your house as you walked to the mailbox. Examine the data presented in the table provided in the book and answer the following questions:
(a) What instruments might have you used to collect data?
(b) Represent your motion using a position-versus-time graph.
(c) Tell the story of your motion in words.
(d) Show on the graph the displacement, distance, and path length.
Shown below is a graph of velocity versus time for a moving object. The object starts at position x = 0 m at t = 0 s. What is the final position in meters, from t = 0 s to t = 2.0 s?
Your answer needs to have 3 significant figures, including the negative sign in your answer if needed. (No unit is needed in your answer, it is already given in the question statement.)
The displacement (in feet) of a certain particle moving in a straight line is given by y =
(A) Find the average velocity for the time period beginning when t = 3 and lasting
(i) .01 s:
(ii) .005 s:
(iii.002 s:
(iv) .001 s:
NOTE: For the above answers, you may have to enter 6 or 7 significant digits if you are using
a calculator.
(B) Estimate the instantaneous velocity when t = 3.
Answer:
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The displacement (in meters) of an object moving in a straight line is given by s=2/t where t is measured in seconds. Find the average velocity over the time interval [1,3]. Find the instantaneous rate velocity when t=1. Note: Do not use rules of differentiation.arrow_forwardA car starts moving at time t=0 and goes faster and faster. Its velocity is shown in the following table. t (seconds) 0 3 6 9 12 Velocity (ft/sec) 0 8 27 43 74 A. Estimate how far the car traveled during the first 12 seconds using the left-hand sums with 4 subdivisions. Answer: B. Now estimate how far the car traveled during the first 12 seconds using the right-hand sums with four subdivisions. Answer:arrow_forward(a)At what speed did the object start the motion at 0.0 s? (b) Calculate the acceleration of the object’s motion. (c)Use the graph to determine the displacement of the object while it travelled from 0 – 1.5 s.arrow_forward
- The acceleration of an object (in m/s2) is given by the function a ( t ) = 5 sin ( t ). The initial velocity of the object is v ( 0 ) = − 9 m/s. Round your answers to four decimal places. a) Find an equation v(t) for the object velocity. b) Find the object's displacement (in meters) from time 0 to time 3. c) Find the total distance traveled by the object from time 0 to time 3.arrow_forwardA person is walking briskly in a straight line, which we shall call the xx axis. The figure shows a graph of the person’s position xx along this axis as a function of time tt. (Figure attached) 1) What is the person’s displacement between t=t= 2.0 ss and t=t= 11.0 ss? Express your answer in meters to two significant figures. 2) What is the person’s displacement between t=t= 3.0 ss and t=t= 11.0 ss? Express your answer in meters to two significant figures. 3) What is the person’s displacement between t=t= 2.0 ss and t=t= 3.0 ss? Express your answer in meters to two significant figures. 4) What is the person’s displacement between t=t= 2.0 ss and t=t= 4.0 ss? Express your answer in meters to two significant figures. 5) What distance did the person move from t=t= 0 ss to t=t= 6.0 ss? Express your answer in meters to two significant figures. 6) What distance did the person move from t=t= 2.0 ss to t=t= 4.0 ss? Express your answer in meters to two significant figures. 7)…arrow_forwardIf it takes a horse 175 seconds to make 3.00 laps around a horse track (each lap is equal to 1.00 km), what was the horse's average velocity in m/s when he crosses the start/finish line? Be sure to answer to the correct number of significant digits and include units.arrow_forward
- "A jet plane is cruising at 320 m/sm/s when suddenly the pilot turns the engines up to full throttle. After traveling 4.8 km , the jet is moving with a speed of 400 m/sm/s. What is the jet's acceleration, assuming it to be a constant acceleration? Express your answer to two significant figures and include the appropriate units." I am having issues setting up word problems to begin solving. Need an easier method or technique to help deciper these.arrow_forwardA drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward, followed again by 8 steps forward and 5 steps backward, and so on. Each step is 1 m long and requires 1s. Plot the x-t graph of his motion. Determine graphically and otherwise how long the drunkard takes to fall in a pit 15 m away from the start.arrow_forwardThe graph above shows the acceleration of a cart as a function of time during a 7-second period. The numbers on the vertical axis have intentionally been left blank. The cart starts at the origin with a velocity of zero and an acceleration of zero. The acceleration increases (in the positive direction) at a steady rate for 4.0 seconds, when the acceleration reaches a value of 4 meters per second squared. The acceleration is then zero for the remaining 3.0 seconds. What is the position of the cart (in meters) when t = 5.3 seconds?arrow_forward
- If an average-size man jumps from an airplane with an open parachute, his downward velocity t seconds into the fall is v(t) = 20(10.2) feet per second. (a) Use functional notation to express the velocity 3 seconds into the fall. Calculate it. ft per sec (b) Explain how the velocity increases with time. Include in your explanation the average rate of change from the beginning of the fall to the end of the first second and the average rate of " change from the fourth second to the fifth second of the fall. This answer has not been graded yet. (c)-Find the terminal velocity. ft per sec (d) Compare the time it takes to reach 99% of terminal velocity here with the 25 seconds it took a skydiver with his parachute closed to reach 99% of terminal velocity in Example 2.1. On the basis of the information we have, which would you expect to reach 99% of terminal velocity first, O feather feather or a cannonball? O cannonball Need Help? Read Itarrow_forwardA kicker kicks a football upward from the ground at an initial velocity of 63 feet per second. The height of the football stadium is 70 feet. The height an object reaches with respect to time is modeled by the following equation: gr +vt +s In the equation, g is -32 ft/sec', v is the initial velocity, s is the initial height, and t is time in seconds. Write a function that models this situation as related to the number of seconds since kickoff. 1. 2. Sketch and describe the graph of this function, including intercepts and maximum height. 3. At what times is the football the same height as the stadium? Explain your answer. 4. Suppose the initial velocity of the kicked football is 68 feet per second. At what times is the football the same height as the top of the stadium? Justify your answer. Now consider that the kicker is trying to kick an extra point. A linebacker on the opposing team has a maximum reach of 10 feet, which includes his height, full extension of his arms, and his…arrow_forwardShown below is a graph of velocity versus time for a moving object. The object starts at position x = 0 m at t = 0 s. What is the final position in meters, from t = 0s to t = 2.0 s? Your answer needs to have 3 significant figures, including the negative sign in your answer if needed. (No unit is needed in your answer, it is already given in the question statement.) A 1 3 time in seconds velocity in meters/second +10 -10 Iarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY