An insect called the froghopper ( Philaenus spumarius ) has been called the best juniper in the animal kingdom. This insect can accelerate at over 4.0 × 10 3 m/s 2 during a displacement of 2.0 mm as it straightens its specially equipped “jumping legs.” (a) Assuming uniform acceleration, what is the insect's speed after it has accelerated through this short distance? (b) How long does it take to reach that speed? (c.) How high could the insect jump if air resistance could be ignored? Note that, the actual height obtained is about 0.70 m, so air resistance is important here.
An insect called the froghopper ( Philaenus spumarius ) has been called the best juniper in the animal kingdom. This insect can accelerate at over 4.0 × 10 3 m/s 2 during a displacement of 2.0 mm as it straightens its specially equipped “jumping legs.” (a) Assuming uniform acceleration, what is the insect's speed after it has accelerated through this short distance? (b) How long does it take to reach that speed? (c.) How high could the insect jump if air resistance could be ignored? Note that, the actual height obtained is about 0.70 m, so air resistance is important here.
An insect called the froghopper (Philaenus spumarius) has been called the best juniper in the animal kingdom. This insect can accelerate at over 4.0 × 103 m/s2 during a displacement of 2.0 mm as it straightens its specially equipped “jumping legs.” (a) Assuming uniform acceleration, what is the insect's speed after it has accelerated through this short distance? (b) How long does it take to reach that speed? (c.) How high could the insect jump if air resistance could be ignored? Note that, the actual height obtained is about 0.70 m, so air resistance is important here.
Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.
Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.
3. An Atwood machine consists of two masses, mA
and m B, which are connected by an inelastic cord
of negligible mass that passes over a pulley. If the
pulley has radius RO and
moment of inertia I about its axle, determine the
acceleration of the masses
mA and m B, and compare to the situation where the
moment of inertia of the
pulley is ignored. Ignore friction at the axle O. Use
angular momentum and torque in this solution
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.