College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 67AP
Emily challenges her husband, David, to catch a $1 bill as follows. She holds the bill vertically as in Figure P2.67, with the center of the bill between David's index finger and thumb. David must catch the bill after Emily releases it without moving his hand downward. If his reaction time is 0.2 s, will he succeed? Explain your reasoning. (This challenge is a good trick you might want to try with your friends.)
Figure P2.67
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Why is the following situation possible?
Emily challenges her friend David to catch a $1 bill as follows. She holds the bill vertically as shown in figure P2.29 with the center of the bill between but not touching David's index finger and thumb. Without warning, Emily releases the bill. David catches the bill without moving his hands downwards. David reaction time is equal to the average human reaction time.
Avg human reaction time is .2s.
Dollar bill is approx 15.5cm in length.
I need help explaining this. Thank you.
Emily challenges her husband, David, to catch a $1 bill as follows. She holds the bill vertically as in Figure P2.69, with the center of the bill between David’s index finger and thumb. David must catch the bill after Emily releases it without moving his hand downward. If his reaction time is 0.2 s, will he succeed? Explain your reasoning. (This challenge is a good trick you might want to try with your friends.)
Why is the following situation impossible? Emily challenges David to catch a $1 bill as follows. She holds the bill vertically as shown, with the centerof the bill between but not touching David’s index finger and thumb. Withoutwarning, Emily releases the bill. David catches the bill without moving his hand downward. David’s reaction time is equal to the average human reaction time.
Chapter 2 Solutions
College Physics
Ch. 2.1 - Figure 2.4 shows the unusual path of a confused...Ch. 2.1 - True or False? (a) A car must always have an...Ch. 2.1 - Parts (a), (b), and (c) of Figure 2.10 represent...Ch. 2.2 - The three graphs in Figure 2.13 represent the...Ch. 2.2 - Figure 2.14a is a diagram of a multiflash image of...Ch. 2.4 - A tennis player on serve tosses a ball straight...Ch. 2.4 - As the tennis ball of Quick Quiz 2.6 travels...Ch. 2.4 - A skydiver jumps out of a hovering helicopter. A...Ch. 2 - If the velocity of a particle is nonzero, can the...Ch. 2 - If the velocity of a particle is zero, can the...
Ch. 2 - If a car is traveling eastward, can its...Ch. 2 - (a) Can the equations in Table 2.4 be used in a...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Figure CQ2.6 shows strobe photographs taken of a...Ch. 2 - (a) Can the instantaneous velocity of an object at...Ch. 2 - A ball is thrown vertically upward. (a) What are...Ch. 2 - An object moves along the x-axis, its position...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A juggler throws a bowling pin straight up in the...Ch. 2 - A racing car starts from rest and reaches a final...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - Light travels at a speed of about 3 103 m/s. (a)...Ch. 2 - A person travels by car from one city to another...Ch. 2 - A football player runs from his own goal line to...Ch. 2 - Two boats start together and race across a...Ch. 2 - A graph of position versus time for a certain...Ch. 2 - A motorist drives for 35.0 minutes at 85.0 km/h...Ch. 2 - A tennis player moves in a straight-line path as...Ch. 2 - A jet plane has a takeoff speed of v0 = 75 m/s and...Ch. 2 - Two cars travel in the same direction along a...Ch. 2 - The cheetah can reach a top speed of 114 km/h (71...Ch. 2 - An athlete swims the length L of a pool in a time...Ch. 2 - A person lakes a trip, driving with a constant...Ch. 2 - A tortoise can run with a speed of 0.10 m/s, and a...Ch. 2 - To qualify for the finals in a racing event, a...Ch. 2 - A paper in the journal Current Biology tells of...Ch. 2 - A graph of position versus time for a certain...Ch. 2 - A race car moves such that, its position fits the...Ch. 2 - Runner A is initially 4.0 mi west of a flagpole...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - A 50.0-g Super Ball traveling at 25.0 m/s bounces...Ch. 2 - The average person passes out at an acceleration...Ch. 2 - A certain car is capable of accelerating at a rate...Ch. 2 - The velocity vs. time graph for an object moving...Ch. 2 - A steam catapult launches a jet aircraft from the...Ch. 2 - PROBLEM A race car starting from rest accelerates...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In 1865 Jules Verne proposed sending men to the...Ch. 2 - A truck covers 40.0 m in 8.50 s while uniformly...Ch. 2 - A speedboat increases its speed uniformly from vi...Ch. 2 - A Cessna aircraft has a liftoff speed of 120....Ch. 2 - An object moves with constant acceleration 4.00...Ch. 2 - In a test run, a certain car accelerates uniformly...Ch. 2 - A jet plane lands with a speed of 100 m/s and can...Ch. 2 - Speedy Sue, driving at 30.0 m/s, enters a one-lane...Ch. 2 - A record of travel along a straight path is as...Ch. 2 - A train is traveling down a straight track at 20...Ch. 2 - A car accelerates uniformly from rest to a speed...Ch. 2 - A car starts from rest and travels for 5.0 s with...Ch. 2 - A car starts from rest and travels for t1 seconds...Ch. 2 - In the Daytona 500 auto race, a Ford Thunderbird...Ch. 2 - The kinematic equations can describe phenomena...Ch. 2 - A hockey player is standing on his skates on a...Ch. 2 - A train 4.00 102 m long is moving on a straight...Ch. 2 - A ball is thrown vertically upward with a speed of...Ch. 2 - A ball is thrown directly downward with an initial...Ch. 2 - A certain freely falling object, released from...Ch. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Traumatic brain injury such as concussion results...Ch. 2 - A small mailbag is released from a helicopter that...Ch. 2 - A tennis player tosses a tennis ball straight up...Ch. 2 - A package is dropped from a helicopter that is...Ch. 2 - A model rocket is launched straight upward with an...Ch. 2 - A baseball is hit so that it travels straight...Ch. 2 - A truck tractor pulls two trailers, one behind the...Ch. 2 - Colonel John P. Stapp, USAF, participated in...Ch. 2 - A bullet is fired through a board 10.0 cm thick in...Ch. 2 - A speedboat moving at 30.0 m/s approaches a...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - Mature salmon swim upstream, returning to spawn at...Ch. 2 - An insect called the froghopper (Philaenus...Ch. 2 - An object is moving in the positive direction...Ch. 2 - A ball is thrown upward from the ground with an...Ch. 2 - A player holds two baseballs a height h above the...Ch. 2 - A ball thrown straight up into the air is found to...Ch. 2 - The thickest and strongest chamber in the human...Ch. 2 - Emily challenges her husband, David, to catch a 1...Ch. 2 - A mountain climber stands at the top of a 50.0-m...Ch. 2 - One of Aesops fables tells of a rare between a...Ch. 2 - In Bosnia, the ultimate test of a young nuns...Ch. 2 - A stuntman sitting on a tree limb wishes to drop...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
The Cosmic Perspective Fundamentals (2nd Edition)
The Rankine temperature scale (abbreviatedR) uses the same size degrees as Fahrenheit, but measured up from abs...
An Introduction to Thermal Physics
Why are scientists interested in the possibility of life beyond Earth?
Life in the Universe (4th Edition)
Explain what happens to the energy carried by light that it is dimmed by passing it through two crossed polariz...
College Physics
Check Your Understanding If the line spacing of a diffraction grating d is not precisely known, we can use a li...
University Physics Volume 3
1. What are the temperatures for freezing water on the Celsius and the Fahrenheit scales, respectively? For boi...
Conceptual Physical Science (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Gaetano shoots a basketball from a height of 6.5 ft with an initial vertical velocity of 17 ft/s. Write an equation to model the height, h, of the basketball t seconds after Gaetano shoots it. b. What is the maximum height the basketball reaches? If the hoop is 10ft high, how long does it take the ball to go through the hoop? a. С. acer DII % & 5 7 q e t р f k C V marrow_forwardA jet plane lands with a speed of 145 m/s and can accelerate at a maximum rate of -7.00 m/?2 as it comes to rest. a. From the instant the plane touches the runway, what is the minimum time interval needed before it can come to rest? b. Can this plane land on a small tropical island airport where the runway is 0.9 km long? Why?arrow_forwardThe first astronaut has landed on Mars. Conducting some physics experiments, she drops a hammer from rest from a height of 2.01 m and uses a stopwatch to measure that the hammer takes 1.04 s to hit the ground. A. Determine the magnitude of the acceleration due to gravity on Mars. B. She then throws the hammer straight up into the Martian sky. If she comes back to her hand in 4.20 s, with what speed did she throw it?arrow_forward
- What is a, b, and c?arrow_forwardThe acceleration of an object increases linearly from 4 fps? to 12 fps? in 9 seconds. By the end of 9 seconds, the velocity is 48 fps. NOTE: At the start, the object is at the zero-reference point of displacement. a. Draw the a-t graph. Find the equation of the acceleration as the function of time. b. Draw the v-t graph. Find the equation of the velocity as the function of time. C. Draw the s-t graph. Find the equation of the displacement as the function of time.arrow_forwardConsider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. Begin with the acceleration equation a(t) = v'(t) = g, where g= - 9.8 m/s. a. Find the velocity of the object for all relevant times. b. Find the position of the object for all relevant times. c. Find the time when the object reaches its highest point. What is the height? d. Find the time when the object strikes the ground. A softball is popped up vertically (from the ground) with a velocity of 25 m/s. а. v(t) b. s(t) = %3D c. The object's highest point is m at time t= S. (Simplify your answers. Round to two decimal places as needed.) d. t= (Simplify your answer. Round to two decimal places as needed.)arrow_forward
- What is E and F?? Please help!arrow_forward4. A robotic vehicle is exploring the surface of Mars. The robot, which is represented as a point, has x - and y-coordinates that vary with time: x = (3 − 2t); y = (-t² + 4t³) where x and y are in meters and t is in seconds. a. Find the average velocity of the robot between t = 0s and t = 2s. b. Find the average acceleration of the robot between t = 0s and t = 2s. c. At what time the acceleration of the robot will be zero. a. Vavg= -21 + 14ĵ m/s b. davg = 22ĵ C. m s² 2 t = = = 0.083 s 24arrow_forwardOne afternoon, a student was going home after attending a calculus class. For this reason, the student orders an online motorcycle taxi through the application. At the time of ordering, the online motorcycle taxi is in the position s = 2t² + 2t+4, where t is in units of time and s is in meters. a. Determine the average speed of the online motorcycle taxi at intervals of 3 minutes to 5 minutes. b. Determine the time when the instantaneous speed of the online motorcycle taxi is exactly the same as the average speed. NEED IN RUSH THANKSarrow_forward
- Emily challenges her husband, David, to catch a $1 bill as follows. She holds the bill vertically, with the center of the bill between David's index finger and thumb. David must catch the bill after Emily releases it without moving his hand downward. If his reaction time is 0.2 s, will he succeed? Yes or No Explain your reasoning. (This challenge is a good trick you might want to try with your friends.)arrow_forwarda. Find the velocity v(t) and acceleration a(t). b. At what value of t does v=0? c. What is the maximum height?arrow_forwardAn electron, in a picture tube of a TV set, travelling in a straight line, accelerates uniformly from speed 4.0 x 104 to 9.0 x 106 m/s along a lenght of 2.0 cm a. How much time does the electron spend in this 2 cm region? b. What is the magnitude of the electron's acceleration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY