
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 13P
A person lakes a trip, driving with a constant speed of 89.5 km/h, except, for a 22.0-min rest stop. If the person’s average speed is 77.8 km/h, (a) how much time is spent on the trip and (b) how far does the person travel?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Solve and answer the problem correctly and be sure to check your work. Thank you!!
Solve and answer the problem correctly and be sure to check your work. Thank you!!
A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?
Chapter 2 Solutions
College Physics
Ch. 2.1 - Figure 2.4 shows the unusual path of a confused...Ch. 2.1 - True or False? (a) A car must always have an...Ch. 2.1 - Parts (a), (b), and (c) of Figure 2.10 represent...Ch. 2.2 - The three graphs in Figure 2.13 represent the...Ch. 2.2 - Figure 2.14a is a diagram of a multiflash image of...Ch. 2.4 - A tennis player on serve tosses a ball straight...Ch. 2.4 - As the tennis ball of Quick Quiz 2.6 travels...Ch. 2.4 - A skydiver jumps out of a hovering helicopter. A...Ch. 2 - If the velocity of a particle is nonzero, can the...Ch. 2 - If the velocity of a particle is zero, can the...
Ch. 2 - If a car is traveling eastward, can its...Ch. 2 - (a) Can the equations in Table 2.4 be used in a...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Figure CQ2.6 shows strobe photographs taken of a...Ch. 2 - (a) Can the instantaneous velocity of an object at...Ch. 2 - A ball is thrown vertically upward. (a) What are...Ch. 2 - An object moves along the x-axis, its position...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A juggler throws a bowling pin straight up in the...Ch. 2 - A racing car starts from rest and reaches a final...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - Light travels at a speed of about 3 103 m/s. (a)...Ch. 2 - A person travels by car from one city to another...Ch. 2 - A football player runs from his own goal line to...Ch. 2 - Two boats start together and race across a...Ch. 2 - A graph of position versus time for a certain...Ch. 2 - A motorist drives for 35.0 minutes at 85.0 km/h...Ch. 2 - A tennis player moves in a straight-line path as...Ch. 2 - A jet plane has a takeoff speed of v0 = 75 m/s and...Ch. 2 - Two cars travel in the same direction along a...Ch. 2 - The cheetah can reach a top speed of 114 km/h (71...Ch. 2 - An athlete swims the length L of a pool in a time...Ch. 2 - A person lakes a trip, driving with a constant...Ch. 2 - A tortoise can run with a speed of 0.10 m/s, and a...Ch. 2 - To qualify for the finals in a racing event, a...Ch. 2 - A paper in the journal Current Biology tells of...Ch. 2 - A graph of position versus time for a certain...Ch. 2 - A race car moves such that, its position fits the...Ch. 2 - Runner A is initially 4.0 mi west of a flagpole...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - A 50.0-g Super Ball traveling at 25.0 m/s bounces...Ch. 2 - The average person passes out at an acceleration...Ch. 2 - A certain car is capable of accelerating at a rate...Ch. 2 - The velocity vs. time graph for an object moving...Ch. 2 - A steam catapult launches a jet aircraft from the...Ch. 2 - PROBLEM A race car starting from rest accelerates...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In 1865 Jules Verne proposed sending men to the...Ch. 2 - A truck covers 40.0 m in 8.50 s while uniformly...Ch. 2 - A speedboat increases its speed uniformly from vi...Ch. 2 - A Cessna aircraft has a liftoff speed of 120....Ch. 2 - An object moves with constant acceleration 4.00...Ch. 2 - In a test run, a certain car accelerates uniformly...Ch. 2 - A jet plane lands with a speed of 100 m/s and can...Ch. 2 - Speedy Sue, driving at 30.0 m/s, enters a one-lane...Ch. 2 - A record of travel along a straight path is as...Ch. 2 - A train is traveling down a straight track at 20...Ch. 2 - A car accelerates uniformly from rest to a speed...Ch. 2 - A car starts from rest and travels for 5.0 s with...Ch. 2 - A car starts from rest and travels for t1 seconds...Ch. 2 - In the Daytona 500 auto race, a Ford Thunderbird...Ch. 2 - The kinematic equations can describe phenomena...Ch. 2 - A hockey player is standing on his skates on a...Ch. 2 - A train 4.00 102 m long is moving on a straight...Ch. 2 - A ball is thrown vertically upward with a speed of...Ch. 2 - A ball is thrown directly downward with an initial...Ch. 2 - A certain freely falling object, released from...Ch. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Traumatic brain injury such as concussion results...Ch. 2 - A small mailbag is released from a helicopter that...Ch. 2 - A tennis player tosses a tennis ball straight up...Ch. 2 - A package is dropped from a helicopter that is...Ch. 2 - A model rocket is launched straight upward with an...Ch. 2 - A baseball is hit so that it travels straight...Ch. 2 - A truck tractor pulls two trailers, one behind the...Ch. 2 - Colonel John P. Stapp, USAF, participated in...Ch. 2 - A bullet is fired through a board 10.0 cm thick in...Ch. 2 - A speedboat moving at 30.0 m/s approaches a...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - Mature salmon swim upstream, returning to spawn at...Ch. 2 - An insect called the froghopper (Philaenus...Ch. 2 - An object is moving in the positive direction...Ch. 2 - A ball is thrown upward from the ground with an...Ch. 2 - A player holds two baseballs a height h above the...Ch. 2 - A ball thrown straight up into the air is found to...Ch. 2 - The thickest and strongest chamber in the human...Ch. 2 - Emily challenges her husband, David, to catch a 1...Ch. 2 - A mountain climber stands at the top of a 50.0-m...Ch. 2 - One of Aesops fables tells of a rare between a...Ch. 2 - In Bosnia, the ultimate test of a young nuns...Ch. 2 - A stuntman sitting on a tree limb wishes to drop...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Single penny tossed 20 times and counting heads and tails: Probability (prediction): _______/20 heads ________/...
Laboratory Manual For Human Anatomy & Physiology
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Sea turtles have disappeared from many regions, and one way of trying to save them is to reintroduce them to ar...
MARINE BIOLOGY
Gregor Mendel never saw a gene, yet he concluded that some inherited factors were responsible for the patterns ...
Campbell Essential Biology (7th Edition)
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
More than one choice may apply. Using the terms listed below, fill in the blank with the proper term. anterior ...
Essentials of Human Anatomy & Physiology (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- PROBLEM 2 A cube of mass m is placed in a rotating funnel. (The funnel is rotating around the vertical axis shown in the diagram.) There is no friction between the cube and the funnel but the funnel is rotating at just the right speed needed to keep the cube rotating with the funnel. The cube travels in a circular path of radius r, and the angle between the vertical and the wall of the funnel is 0. Express your answers to parts (b) and (c) in terms of m, r, g, and/or 0. (a) Sketch a free-body diagram for the cube. Show all the forces acting on it, and show the appropriate coordinate system to use for this problem. (b) What is the normal force acting on the cube? FN=mg58 (c) What is the speed v of the cube? (d) If the speed of the cube is different from what you determined in part (c), a force of friction is necessary to keep the cube from slipping in the funnel. If the funnel is rotating slower than it was above, draw a new free-body diagram for the cube to show which way friction…arrow_forwardCircular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present. Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn. tan(θ) =arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forward
- Slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forwardNo chatgpt pls will upvotearrow_forwardA positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forward
- A charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forwarda) What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless. T = b) If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg? mm =arrow_forwardCurve Fitter CURVE FITTER Open Update Fit Save New Exclusion Rules Select Validation Data Polynomial Exponential Logarithmic Auto Fourier Fit Fit Duplicate Data Manual FILE DATA FIT TYPE FIT Harmonic Motion X us 0.45 mi ce 0.4 0.35 0.3 0.25 0.2 Residuals Plot Contour Plot Plot Prediction Bounds None VISUALIZATION Colormap Export PREFERENCES EXPORT Fit Options COA Fourier Equation Fit Plot x vs. t -Harmonic Motion a0+ a1*cos(x*w) + b1*sin(x*w) Number of terms Center and scale 1 ▸ Advanced Options Read about fit options Results Value Lower Upper 0.15 a0 0.1586 0.1551 0.1620 a1 0.0163 0.0115 0.0211 0.1 b1 0.0011 -0.0093 0.0115 W 1.0473 0.9880 1.1066 2 8 10 t 12 14 16 18 20 Goodness of Fit Value Table of Fits SSE 0.2671 Fit State Fit name Data Harmonic Motion x vs. t Fit type fourier1 R-square 0.13345 SSE DFE 0.26712 296 Adj R-sq 0.12467 RMSE 0.030041 # Coeff Valic R-square 0.1335 4 DFE 296.0000 Adj R-sq 0.1247 RMSE 0.0300arrow_forward
- What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?arrow_forwardLet's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forwardi need step by step clear answers with the free body diagram clearlyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY