To find:
Moles and atoms of iron in the given compounds.
Answer to Problem 2.76QA
Solution:
a) 2.5 moles of wolframite - FeWO4 contain 2.5 moles and 1.5 x 1024 atoms of Iron.
b) 2.5 moles of pyrite- FeS2 contain 2.5 moles and 1.5 x 1024 atoms of Iron
c) 2.5 moles of magnetite - Fe3O4 contain 7.5 moles and 4.5 x 1024 atoms of Iron.
d) 2.5 moles of hematite - Fe2O3 contain 5.0 moles and 3.0 x 1024 atoms of Iron.
Explanation of Solution
Calculations:
a) 2.5 moles of FeWO4
In one molecule of FeWO4, there is one atom of Fe. Therefore, we can say that the mole ratio between FeWO4 and Fe is 1:1. Now, we have the mole to mole ratio and moles of FeWO4. So, we can calculate the moles of Fe by using the dimensional analysis as below.
So, 2.5 moles of FeWO4 contain 2.5 moles of Fe.
Now, we convert moles into atoms. We know that in every 1 mol of substance, we have 6.023 x 1023 molecules or atoms of given substance, which is equal to
Using this conversion factor, we will convert 2.5 mol of Fe to atoms of Fe.
So, 2.5 moles of FeWO4 contain 1.5 x 1024 atoms of Fe.
b) 2.5 moles of FeS2
In one molecule of FeS2, there is one atom of Fe. Therefore, we can say that the mole ratio between FeS2 and Fe is 1:1. Now, we have the mole to mole ratio and moles of FeS2. So, we can calculate the moles of Fe by using dimensional analysis as below.
So, 2.5 moles of FeS2 contains 2.5 moles of Fe.
Now, we convert moles into atoms. We know that in every 1 mol of substance, we have 6.023 x 1023 molecules or atoms of the given substance, which is equal to Avogadro’s number.
Using this conversion factor, we will convert 2.5 mol of Fe to atoms of Fe.
So, 2.5 moles of FeS2 contain 1.5 x 1024 atoms of Fe.
c) 2.5 moles of Fe3O4
In one molecule of Fe3O4, there are three atoms of Fe. Therefore, we can say that the mole ratio between Fe3O4 and Fe is 1:3. Now, we have the mole to mole ratio and moles of Fe3O4. So, we can calculate the moles of Fe by using the dimensional analysis as below.
So, 2.5 moles of Fe3O4 contains 7.5 moles of Fe.
Now, we convert moles into atoms. We know that in every 1 mol of substance, we have 6.023 x 1023 molecules or atoms of given substance, which is equal to Avogadro’s number.
Using this conversion factor, we will convert 7.5 mol of Fe to atoms of Fe.
So, 2.5 moles of Fe3O4 contain 4.5 x 1024 atoms of Fe.
d) 2.5 moles of Fe2O3
In one molecule of Fe2O3, there are two atoms of Fe. Therefore, we can say that the mole ratio between Fe2O3 and Fe is 1:2. Now, we have the mole to mole ratio and moles of Fe2O3. So, we can calculate the moles of Fe by using dimensional analysis as below.
So, 2.5 moles of Fe2O3 contains 5.0 moles of Fe.
Now, we convert moles into atoms. We know that in every 1 mol of substance, we have 6.023 x 1023 molecules or atoms of given substance, which is equal to Avogadro’s number.
Using this conversion factor, we will convert 5.0 mol of Fe to atoms of Fe.
So, 2.5 moles of Fe2O3 contains 3.0 x 1024 atoms of Fe.
Conclusion:
a) 2.5 moles of wolframite - FeWO4 contain 2.5 moles and 1.5 x 1024 atoms of Iron.
b) 2.5 moles of pyrite- FeS2 contain 2.5 moles and 1.5 x 1024 atoms of Iron
c) 2.5 moles of magnetite - Fe3O4 contain 7.5 moles and 4.5 x 1024 atoms of Iron.
d) 2.5 moles of hematite - Fe2O3 contain 5.0 moles and 3.0 x 1024 atoms of Iron.
Want to see more full solutions like this?
Chapter 2 Solutions
Chemistry: An Atoms-Focused Approach (Second Edition)
- 4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forwardThe following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward
- 1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forwardThe following reactions are NOT ordered in the way in which they occur. Reaction 1 PhO-OPh Reaction 2 Ph-O -CH₂ heat 2 *OPh Pho -CH2 Reaction 3 Ph-O ⚫OPh + -CH₂ Reaction 4 Pho Pho + H₂C OPh + CHOPh H₂C -CH₂ Reactions 1 and 3 Reaction 2 O Reaction 3 ○ Reactions 3 and 4 ○ Reactions 1 and 2 Reaction 4 ○ Reaction 1arrow_forwardSelect all possible products from the following reaction: NaOH H₂O a) b) ОН HO O HO HO e) ОН f) O HO g) h) + OHarrow_forward
- 3. Draw diagrams to represent the conjugation in these molecules. Draw two types of diagram: a. Show curly arrows linking at least two different ways of representing the molecule b. Indicate with dotted lines and partial charges (where necessary) the partial double bond (and charge) distribution H₂N* H₂N -NH2arrow_forwardQuestion 2 of 25 point Question Attempt 3 of Ulimited Draw the structure for 3-chloro-4-ethylheptane. Part 2 of 3 Click and drag to start drawing a structure. Draw the structure for 1-chloro-4-ethyl-3-lodooctane. Click and drag to start drawing a structure. X G X B c Part 3 of 30 Draw the structure for (R)-2-chlorobutane. Include the stereochemistry at all stereogenic centers. Check Click and drag to start drawing a structure. G X A 。 MacBook Pro G P Save For Later Submit Assignment Privacyarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- In a silicon and aluminum alloy, with 12.6% silicon, what are the approximate percentages of the phases present in the constituent that is formed at the end of solidification? Temperature (°C) 1500 1000 L B+L 1415- α+L 577' 500 1.65 12.6 99.83 α+B B 0 Al 20 40 60 Weight percent silicon 80 Siarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY