
To find:
Moles and atoms of titanium in the given compounds

Answer to Problem 2.75QA
Solution:
a) 0.125 moles of FeTiO3 contains 0.125 moles and 7.53 * 1022 atoms of Titanium.
b) 0.125 moles of TiCl4 contains 0.125 moles and 7.53 * 1022 atoms of Titanium
c) 0.125 moles of Ti2O3 contains 0.25 moles and 1.51 * 1023 atoms of Titanium.
d) 0.125 moles of Ti3O5 contains 0.375 moles and 2.26 * 1023 atoms of Titanium.
Explanation of Solution
Calculations:
a) 0.125 mol of FeTiO3
In one molecule of FeTiO3, there is one atom of Ti. Therefore, we can say that the mole ratio between FeTiO3: Ti is 1:1. Now, we have the mole to mole ratio, and moles of FeTiO3; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of FeTiO3 contains 0.125 mol of Ti.
Now, we convert moles into atoms. We know that in every 1 mol of substance we have 6.023 * 1023 molecules or atoms of the given substance which is equal to
Using this conversion factor, we will convert 0.125 mol of Ti to atoms of Ti.
So, 0.125 moles of FeTiO3 contains 7.53 * 1022 atoms of Ti.
b) 0.125 mol of TiCl4
In one molecule of TiCl4, there is one atom of Ti. Therefore, we can say the mole ratio between TiCl4: Ti is 1:1. Now, we have the mole to mole ratio and moles of TiCl4; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of TiCl4 contains 0.125 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.125 mol of Ti to atoms of Ti.
So, 0.125 moles of TiCl4 contains 7.53 * 1022 atoms of Ti.
c) 0.125 mol of Ti2O3
In one molecule of Ti2O3, there are two atoms of Ti. Therefore, we can say the mole ratio between Ti2O3: Ti is 1:2. Now, we have the mole to mole ratio and moles of Ti2O3; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of Ti2O3 contains 0.250 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.250 mol of Ti to atoms of Ti.
So, 0.125 moles of Ti2O3 contains 1.51 * 1023 atoms of Ti.
d) 0.125 mol of Ti3O5
In one molecule of Ti3O5, there are three atoms of Ti. Therefore, we can say the mole ratio between Ti3O5: Ti is 1:3. Now, we have the mole to mole ratio and moles of Ti3O5; so we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of Ti3O5 contains 0.375 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.375 mol of Ti to atoms of Ti.
So 0.125 moles of Ti3O5 contains 2.26 * 1023 atoms of Ti.
Conclusion:
a) 0.125 moles of FeTiO3 contains 0.125 moles and 7.53 * 1022 atoms of Titanium.
b) 0.125 moles of TiCl4 contains 0.125 moles and 7.53 * 1022 atoms of Titanium
c) 0.125 moles of Ti2O3 contains 0.250 moles and 1.51 * 1023 atoms of Titanium.
d) 0.125 moles of Ti3O5 contains 0.375 moles and 2.26 * 1023 atoms of Titanium
Want to see more full solutions like this?
Chapter 2 Solutions
Chemistry: An Atoms-Focused Approach (Second Edition)
- draw the enolate anion and the carbonyl that would be needed to make this product through an aldol addition reaction.arrow_forwardDraw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.arrow_forwardDraw the Michael adduct and final product of the Robinson annulation reaction. Ignore inorganic byproductsarrow_forward
- Post Lab Questions. 1) Draw the mechanism of your Diels-Alder cycloaddition. 2) Only one isomer of product is formed in the Diels-Alder cycloaddition. Why? 3) Imagine that you used isoprene as diene - in that case you don't have to worry about assigning endo vs exo. Draw the "endo" and "exo" products of the Diels-Alder reaction between isoprene and maleic anhydride, and explain why the distinction is irrelevant here. 4) This does not hold for other dienes. Draw the exo and endo products of the reaction of cyclohexadiene with maleic anhydride. Make sure you label your answers properly as endo or exo. 100 °C Xylenes ??? 5) Calculate the process mass intensity for your specific reaction (make sure to use your actual amounts of reagent).arrow_forwardIndicate the product(s) A, B C and D that are formed in the reaction: H + NH-NH-CH [A+B] [C+D] hydrazonesarrow_forwardHow can you prepare a 6 mL solution of 6% H2O2, if we have a bottle of 30% H2O2?arrow_forward
- How many mL of H2O2 from the 30% bottle must be collected to prepare 6 mL of 6% H2O2.arrow_forwardIndicate the product(s) B and C that are formed in the reaction: HN' OCH HC1 B + mayoritario C minoritario OCH3arrow_forwardIndicate the product(s) that are formed in the reaction: NH-NH, OCH3 -H₂O OCH3arrow_forward
- 21.38 Arrange the molecules in each set in order of increasing acidity (from least acidic to most acidic). OH OH SH NH2 8 NH3 OH (b) OH OH OH (c) & & & CH3 NO2 21.39 Explain the trends in the acidity of phenol and the monofluoro derivatives of phenol. OH OH OH OH PK 10.0 PK 8.81 PK 9.28 PK 9.81arrow_forwardidentify which spectrum is for acetaminophen and which is for phenacetinarrow_forwardThe Concept of Aromaticity 21.15 State the number of 2p orbital electrons in each molecule or ion. (a) (b) (e) (f) (c) (d) (h) (i) DA (k) 21.16 Which of the molecules and ions given in Problem 21.15 are aromatic according to the Hückel criteria? Which, if planar, would be antiaromatic? 21.17 Which of the following structures are considered aromatic according to the Hückel criteria? ---0-0 (a) (b) (c) (d) (e) (h) H -H .8.0- 21.18 Which of the molecules and ions from Problem 21.17 have electrons donated by a heteroatom?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





