![Chemistry: An Atoms-Focused Approach (Second Edition)](https://www.bartleby.com/isbn_cover_images/9780393614053/9780393614053_largeCoverImage.gif)
To find:
Moles and atoms of titanium in the given compounds
![Check Mark](/static/check-mark.png)
Answer to Problem 2.75QA
Solution:
a) 0.125 moles of FeTiO3 contains 0.125 moles and 7.53 * 1022 atoms of Titanium.
b) 0.125 moles of TiCl4 contains 0.125 moles and 7.53 * 1022 atoms of Titanium
c) 0.125 moles of Ti2O3 contains 0.25 moles and 1.51 * 1023 atoms of Titanium.
d) 0.125 moles of Ti3O5 contains 0.375 moles and 2.26 * 1023 atoms of Titanium.
Explanation of Solution
Calculations:
a) 0.125 mol of FeTiO3
In one molecule of FeTiO3, there is one atom of Ti. Therefore, we can say that the mole ratio between FeTiO3: Ti is 1:1. Now, we have the mole to mole ratio, and moles of FeTiO3; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of FeTiO3 contains 0.125 mol of Ti.
Now, we convert moles into atoms. We know that in every 1 mol of substance we have 6.023 * 1023 molecules or atoms of the given substance which is equal to
Using this conversion factor, we will convert 0.125 mol of Ti to atoms of Ti.
So, 0.125 moles of FeTiO3 contains 7.53 * 1022 atoms of Ti.
b) 0.125 mol of TiCl4
In one molecule of TiCl4, there is one atom of Ti. Therefore, we can say the mole ratio between TiCl4: Ti is 1:1. Now, we have the mole to mole ratio and moles of TiCl4; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of TiCl4 contains 0.125 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.125 mol of Ti to atoms of Ti.
So, 0.125 moles of TiCl4 contains 7.53 * 1022 atoms of Ti.
c) 0.125 mol of Ti2O3
In one molecule of Ti2O3, there are two atoms of Ti. Therefore, we can say the mole ratio between Ti2O3: Ti is 1:2. Now, we have the mole to mole ratio and moles of Ti2O3; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of Ti2O3 contains 0.250 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.250 mol of Ti to atoms of Ti.
So, 0.125 moles of Ti2O3 contains 1.51 * 1023 atoms of Ti.
d) 0.125 mol of Ti3O5
In one molecule of Ti3O5, there are three atoms of Ti. Therefore, we can say the mole ratio between Ti3O5: Ti is 1:3. Now, we have the mole to mole ratio and moles of Ti3O5; so we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of Ti3O5 contains 0.375 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.375 mol of Ti to atoms of Ti.
So 0.125 moles of Ti3O5 contains 2.26 * 1023 atoms of Ti.
Conclusion:
a) 0.125 moles of FeTiO3 contains 0.125 moles and 7.53 * 1022 atoms of Titanium.
b) 0.125 moles of TiCl4 contains 0.125 moles and 7.53 * 1022 atoms of Titanium
c) 0.125 moles of Ti2O3 contains 0.250 moles and 1.51 * 1023 atoms of Titanium.
d) 0.125 moles of Ti3O5 contains 0.375 moles and 2.26 * 1023 atoms of Titanium
Want to see more full solutions like this?
Chapter 2 Solutions
Chemistry: An Atoms-Focused Approach (Second Edition)
- Q1: For each molecule, assign each stereocenter as R or S. Circle the meso compounds. Label each compound as chiral or achiral. + CI Br : Н OH H wo་ཡིག་ཐrow HO 3 D ။။ဂ CI Br H, CI Br Br H₂N OMe R IN I I N S H Br ជ័យ CI CI D OHarrow_forwardPlease correct answer and don't use hand ratingarrow_forwardNonearrow_forward
- %Reflectance 95 90- 85 22 00 89 60 55 50 70 65 75 80 50- 45 40 WA 35 30- 25 20- 4000 3500 Date: Thu Feb 06 17:21:21 2025 (GMT-05:0(UnknownD Scans: 8 Resolution: 2.000 3000 2500 Wavenumbers (cm-1) 100- 2981.77 1734.25 2000 1500 1000 1372.09 1108.01 2359.09 1469.82 1181.94 1145.20 1017.01 958.45 886.97 820.49 668.25 630.05 611.37arrow_forwardNonearrow_forwardCH3 CH H3C CH3 H OH H3C- -OCH2CH3 H3C H -OCH3 For each of the above compounds, do the following: 1. List the wave numbers of all the IR bands in the 1350-4000 cm-1 region. For each one, state what bond or group it represents. 2. Label equivalent sets of protons with lower-case letters. Then, for each 1H NMR signal, give the 8 value, the type of splitting (singlet, doublet etc.), and the number protons it represents. of letter δ value splitting # of protons 3. Redraw the compound and label equivalent sets of carbons with lower-case letters. Then for each set of carbons give the 5 value and # of carbons it represents. letter δ value # of carbonsarrow_forward
- Nonearrow_forwardCarbohydrates- Draw out the Hawthorne structure for a sugar from the list given in class. Make sure to write out all atoms except for carbons within the ring. Make sure that groups off the carbons in the ring are in the correct orientation above or below the plane. Make sure that bonds are in the correct orientation. Include the full name of the sugar. You can draw out your curve within the text box or upload a drawing below.arrow_forwardHow many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of H2SO4 and in the final volume (2.000 L) and assume random error.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)