
To find:
Moles and atoms of titanium in the given compounds

Answer to Problem 2.75QA
Solution:
a) 0.125 moles of FeTiO3 contains 0.125 moles and 7.53 * 1022 atoms of Titanium.
b) 0.125 moles of TiCl4 contains 0.125 moles and 7.53 * 1022 atoms of Titanium
c) 0.125 moles of Ti2O3 contains 0.25 moles and 1.51 * 1023 atoms of Titanium.
d) 0.125 moles of Ti3O5 contains 0.375 moles and 2.26 * 1023 atoms of Titanium.
Explanation of Solution
Calculations:
a) 0.125 mol of FeTiO3
In one molecule of FeTiO3, there is one atom of Ti. Therefore, we can say that the mole ratio between FeTiO3: Ti is 1:1. Now, we have the mole to mole ratio, and moles of FeTiO3; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of FeTiO3 contains 0.125 mol of Ti.
Now, we convert moles into atoms. We know that in every 1 mol of substance we have 6.023 * 1023 molecules or atoms of the given substance which is equal to
Using this conversion factor, we will convert 0.125 mol of Ti to atoms of Ti.
So, 0.125 moles of FeTiO3 contains 7.53 * 1022 atoms of Ti.
b) 0.125 mol of TiCl4
In one molecule of TiCl4, there is one atom of Ti. Therefore, we can say the mole ratio between TiCl4: Ti is 1:1. Now, we have the mole to mole ratio and moles of TiCl4; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of TiCl4 contains 0.125 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.125 mol of Ti to atoms of Ti.
So, 0.125 moles of TiCl4 contains 7.53 * 1022 atoms of Ti.
c) 0.125 mol of Ti2O3
In one molecule of Ti2O3, there are two atoms of Ti. Therefore, we can say the mole ratio between Ti2O3: Ti is 1:2. Now, we have the mole to mole ratio and moles of Ti2O3; so, we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of Ti2O3 contains 0.250 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.250 mol of Ti to atoms of Ti.
So, 0.125 moles of Ti2O3 contains 1.51 * 1023 atoms of Ti.
d) 0.125 mol of Ti3O5
In one molecule of Ti3O5, there are three atoms of Ti. Therefore, we can say the mole ratio between Ti3O5: Ti is 1:3. Now, we have the mole to mole ratio and moles of Ti3O5; so we can calculate the moles of Ti using the dimensional analysis method.
So, 0.125 mol of Ti3O5 contains 0.375 mol of Ti.
We know that 1 mol of Ti = 6.023 * 1023 atoms of Ti. Using this conversion factor, we will convert 0.375 mol of Ti to atoms of Ti.
So 0.125 moles of Ti3O5 contains 2.26 * 1023 atoms of Ti.
Conclusion:
a) 0.125 moles of FeTiO3 contains 0.125 moles and 7.53 * 1022 atoms of Titanium.
b) 0.125 moles of TiCl4 contains 0.125 moles and 7.53 * 1022 atoms of Titanium
c) 0.125 moles of Ti2O3 contains 0.250 moles and 1.51 * 1023 atoms of Titanium.
d) 0.125 moles of Ti3O5 contains 0.375 moles and 2.26 * 1023 atoms of Titanium
Want to see more full solutions like this?
Chapter 2 Solutions
Chemistry: An Atoms-Focused Approach (Second Edition)
- For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forwardPredict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forward
- For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forward
- give example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward
- 3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forwardA 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





