Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 26P
To determine
The lowest pressure that can exist in the pump to the corresponding temperature
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
B) A closed cylindrical tank filled with water has a hemispherical dome and is connected to an inverted piping
system as shown in Fig.(2). The liquid in the top part of the piping system has a relative density of 0.8, and the
remaining parts of the system are filled with water. If the pressure gage reading at A is 60 kPa, determine: (a)
the pressure in pipe B, and (b) the pressure head, in millimeters of mercury, at the top of the dome lpoint C2.
Hemispherical dome
SG = 0.8
4 m
PA=
60 kPa
3 m
3 m
Water
2 m
Water
The right limb of a simple U-tube
manometer containing mercury is open to
the atmosphere while the left limb is
connected to a pipe in which a fluid of SG =
0.9 is flowing. The center of the pipe is 12
cm below the level of mercury in the right
limb. Find the pressure of fluid in the pipe if
the difference of mercury level in the two
limbs is 20 cm. Use SGHg = 13.6.
P
A
12
I
21K
20 cm
Find the distance h seen on the Mercury U manometer for the values given in the water tank.
Chapter 2 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 2 - For a substance, what is the difference between...Ch. 2 - What is the difference between intensive and...Ch. 2 - What is specific gravity? How is it related to...Ch. 2 - The specific weight of a system is defined as the...Ch. 2 - Prob. 5CPCh. 2 - Under what conditions is the ideal-gas assumption...Ch. 2 - What is the difference between R and Ru? How are...Ch. 2 - A fluid that occupies a volume of 24 L weighs 22 N...Ch. 2 - Prob. 9PCh. 2 - A mass of 1-Ibm of argon is maintained at 200 psia...
Ch. 2 - What is the specific volume of oxygen at 40 psia...Ch. 2 - The air in an automobile tire with a volume of...Ch. 2 - The pressure in an automobile tire depends on the...Ch. 2 - A spherical balloon with a diameter of 9 m is...Ch. 2 - Prob. 16PCh. 2 - Prob. 18EPCh. 2 - Does water boil at higher temperatures at higher...Ch. 2 - Prob. 22CPCh. 2 - What is cavitation? What causes it?Ch. 2 - What is vapor pressure? How is it related to...Ch. 2 - Prob. 24EPCh. 2 - A pump is used to transport water to a higher...Ch. 2 - Prob. 26PCh. 2 - The analysis of a propeller that operates in water...Ch. 2 - What is flow energy? Do fluids at rest possess any...Ch. 2 - How do the energies of a flowing fluid and a fluid...Ch. 2 - Prob. 30CPCh. 2 - Prob. 31CPCh. 2 - List the forms of energy that contribute to the...Ch. 2 - How are heat, internal energy, and thermal energy...Ch. 2 - Using average specific heats, explain how internal...Ch. 2 - Prob. 35CPCh. 2 - Saturated water vapor at 150°C (enthalpy...Ch. 2 - Prob. 37CPCh. 2 - What does the coefficient of volume expansion of a...Ch. 2 - Can the coefficient of compressibility of a fluid...Ch. 2 - Water at 15°C and 1 atm pressure is heated to 95°C...Ch. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Water at 1 atm pressure is compressed to 400 atm...Ch. 2 - The volume of an ideal gas is to be reduced by...Ch. 2 - Saturated refrigerant-134a liquid at 10C is cooled...Ch. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - The density of seawater at a free surface where...Ch. 2 - Prob. 49EPCh. 2 - Prob. 50EPCh. 2 - Prob. 51PCh. 2 - The ideal gas equation of state is very simple,...Ch. 2 - A frictionless piston-cylinder device contains 10...Ch. 2 - Reconsider Prob. 2-48. Assuming a bear pressure...Ch. 2 - Prob. 55CPCh. 2 - Prob. 56CPCh. 2 - Prob. 57CPCh. 2 - Prob. 58CPCh. 2 - Prob. 59CPCh. 2 - Prob. 60CPCh. 2 - Is then sonic ve1ocity a specified medium a fixed...Ch. 2 - The Airbus A-340 passenger plane has a maximum...Ch. 2 - Carbon dioxide enters an adiabatic nozzle at 1200...Ch. 2 - Prob. 64PCh. 2 - Assuming ideal gas behavior, determine the speed...Ch. 2 - Prob. 66PCh. 2 - Steam flows through a device with a pressure of...Ch. 2 - Prob. 69EPCh. 2 - Air expands isentropically from 2.2 MPa 77C to 0.4...Ch. 2 - Repeat Prob. 2-66 for helium gas.Ch. 2 - Prob. 72PCh. 2 - What is viscosity? What is the cause of it is...Ch. 2 - Prob. 74CPCh. 2 - How does the kinematic viscosity of (a) liquids...Ch. 2 - Prob. 76CPCh. 2 - Prob. 77CPCh. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - Consider the flow of a fluid with viscosity ...Ch. 2 - A thin 30cm30cm flat plate is pulled at 3 m/s...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - The dynamic viscosity of carbon dioxide at 50°C...Ch. 2 - For flow over a plate, the variation of velocity...Ch. 2 - In regions far from the entrance, fluid flow...Ch. 2 - Repeat Prob. 2-83 for umax=6m/s .Ch. 2 - A frustum-shaped body is rotating at a constant...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - A large plate is pulled at a constant speed of U =...Ch. 2 - A cylinder of mass m slides down from rest in a...Ch. 2 - A thin plate moves between two parallel,...Ch. 2 - Prob. 95PCh. 2 - What is surface tension” What is its cause? Why is...Ch. 2 - Prob. 97CPCh. 2 - What is the capillary effect? What is its cause?...Ch. 2 - Prob. 99CPCh. 2 - Is the capillary rise greater in small- or...Ch. 2 - Prob. 101PCh. 2 - A2.4-in-diameter soap bubble is to be enlarged by...Ch. 2 - Prob. 103PCh. 2 - Determine the gage pressure inside a soap bubble...Ch. 2 - A 0.03-in-diameter glass tube is inserted into...Ch. 2 - Prob. 106PCh. 2 - A capillary tube of 1.2 mm diameter is immersed...Ch. 2 - Prob. 108PCh. 2 - Contrary to what you might expect, a solid steel...Ch. 2 - Nutrients dissolved in water are carried to upper...Ch. 2 - Prob. 111PCh. 2 - Consider a 55-cm-long journal bearing that is...Ch. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - A rigid tank contains an ideal gas at 300kPa and...Ch. 2 - The absolute pressure of an automobile tire is...Ch. 2 - The composition of a liquid with suspended solid...Ch. 2 - Prob. 119PCh. 2 - A 10-m3 tank contacts nitrogen at 25C and 800kPa....Ch. 2 - Prob. 123PCh. 2 - Although liquids, in general, are hard to...Ch. 2 - Prob. 125PCh. 2 - Prob. 126PCh. 2 - Prob. 127PCh. 2 - Reconsider Prob. 2-120. The shaft now rotates with...Ch. 2 - A 10-cm diameter cylindrical shaft rotates inside...Ch. 2 - Some rocks or bricks contain small air pockets in...Ch. 2 - Prob. 131PCh. 2 - Prob. 132PCh. 2 - Prob. 133PCh. 2 - Prob. 134PCh. 2 - Liquid water vaporizes into water vaper as it ?aws...Ch. 2 - In a water distribution system, the pressure of...Ch. 2 - Prob. 137PCh. 2 - The difference between the energies of a flowing...Ch. 2 - Prob. 139PCh. 2 - An ideal gas is compressed isothermally from...Ch. 2 - Prob. 141PCh. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Water is compressed from 100 kPa to 5000 kPa at...Ch. 2 - Prob. 145PCh. 2 - The dynamic viscosity of air at 20C and 200kPa is...Ch. 2 - A viscometer constructed of two 30-cm -long...Ch. 2 - Prob. 148PCh. 2 - Prob. 149PCh. 2 - Prob. 150PCh. 2 - Prob. 151PCh. 2 - Prob. 152PCh. 2 - Prob. 153PCh. 2 - Prob. 154PCh. 2 - Evan though steel is about 7 to 8 times denser...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Methanol (SG=0.792) is contained in a large tank under a pressure of 350000 Pa absolute. When a valve on the bottom of the tank is opened, the methanol drains freely though a 0.02 m ID tube whose outlet is 7.00 m below the surface of the methanol. The pressure at the outlet of the discharge pipe is 101325 Pa. Some useful constants and conversions: g = 9.8 m/s2 , Pref = 1000 kg/m3 . a. Draw the system. Label points I and 2 (where you will define A= 2-1) and label the variables with values b Write the general form of the energy balance. Cancel out negligible terms, and state the keyword/assumption to justify. Simplify to the resultant energy balance. c.) Assume the diameter of the tank is very big compared to the drain tube velocity, which make the velocity of liquid in the tank equal to zero. Estimate the methanol discharge velocity in the drain tube in m/s. *hint: divide your EB by m to eliminate m and V. Recall, n = pV = pvA and = v/m=1/parrow_forward. Ooredoo 9:02 PM moodle.nct.edu.om - Private A simple U tube manometer is used to measure the pressure of oil flowing in a pipeline. Its left limb is open to the atmosphere and the right limb is connected to the pipe. The center of the pipe is 170 mm below the level of mercury in the left limb. If the difference of mercury level in the two limbs is 240 mm, determine the gauge pressure of the oil in the pipe in Pascal. The specific gravity of the oil & mercury is 1.86 and 13.6 respectively. Solution: (i) Density of oil in kg/m³ 66% (ii) Density of mercury in kg/m³ (iii) Height of the Oil in the right limb (in meters of oil) h₁ (iv) The gauge pressure of the oil in the pipe in (in Pascal)arrow_forwardThe water level in a tank is 66 ft above the ground.A hose is connected to the bottom of the tank at the groundlevel and the nozzle at the end of the hose is pointed straightup. The tank cover is airtight, but the pressure over the watersurface is unknown. Determine the minimum tank air pressure (gage) that will cause a water stream from the nozzle torise 90 ft from the ground.arrow_forward
- A capillary tube viscometer is being selected to measure viscosity of a liquid food. The maximum viscosity to be measured will be 230 cP and the maximum flow rate that can be measured accurately is 0.015 kg/min. If the tube length is 10cm and a maximum pressure of 25 Pa can be measured, determine the tube diameter to be used. The density of the product is 1000 kg/m3.arrow_forwardFluid flows through the venture tube shown below. Pressure at section 2 is equal to 101 kPa. If pressure at point 1 is 251 kPa, determine the manometer reading h? Density of fluid and mercury are 1000 kg/m^3 and 13750 kg/m 3, respectively. section 1 section 2 mercury 15.3 m 1.861 m O 25.59 m 1.2 m O L112 m O Oarrow_forwardPlease fast!arrow_forward
- A simple manometer is used to measure the pressure of oil s.p 0•8 flowing in a pipeline it's right limb is open to the atmosphere and the left limb is connected to the pipe.The centr of the pipe is 9•0cm below the level of the mercury in the right limb.if the difference of the mercury level in the two limbs is 15cm, determine the absolute and the gauge pressures of the oil in the pipe.arrow_forwardA u_tube whose arms are open to the atmosphere. Now equal volumes of water and light oil. (density =49.4kg/m^3)are poured from different arms. A person blows from the oil side of the u_tube until the contact surface of the two fluid moves to the bottom u_tube, and thus the liquid levels in the two arms are the same .if the fluid height in each arm is 30in,Determine the gauge pressure the person exerts on the oil by blowing.arrow_forwardI need the answer as soon as possiblearrow_forward
- Nonearrow_forwardOne end of a tube of unknown radius is immersed to a depth of 15 mm in water and an air bubble is blown at the end of this tube. The maximum air pressure measured is 200 Pa. The same procedure is carried out in a liquid and the maximum air pressure recorded in 150 Pa. Determine the surface tension of the liquid. Data given: Density of water = 997 kg/m3 Density of liquid = 850 kg/m3 Density of air = 1.2 kg/m3 Surface tension of water = 72 mN/marrow_forwardFigure below shows an open water manometer for the measurement of the pressure of a pipeline in Saudi Arabia containing oil (S.G 0.90). The density of water is 1000 kgm/m^3. For the readings given, determine the pressure at point x if the barometric pressure is 100 KPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License