Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 154P
To determine
(a)
The minimum average inlet velocity at which the cavitation occur in the throat.
To determine
(b)
The minimum average inlet velocity at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
pls replyy
Gasoline (SG-0.7) flows down an inclined
pipe whose upper and lower sections are 90
mm (section 1) and 60 mm (section 2) in
diameter respectively. The pressure and
velocity in section 1 are 280 kPa and 2.3
m/s respectively. If the difference in
elevation between the 2 sections is 2.5m,
find the pressure at point 2.
Q.5
A 30 cm diameter Horizontal Pipe
terminates in a nozzle with exit diameter of
5 cm. If water flows through the Pipe at a
3
rate of 0.2 m/s. What force (in MN) will be
exerted by fluid on nozzle.
Type your answer here..
SUBMIT
A tank of area A 0 is draining in laminar flow through a pipeof diameter D and length L , as shown in Fig. P4.92.Neglecting the exit jet kinetic energy and assuming thepipe flow is driven by the hydrostatic pressure at itsentrance, derive a formula for the tank level h ( t ) if it's initiallevel is h 0 .
Chapter 2 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 2 - For a substance, what is the difference between...Ch. 2 - What is the difference between intensive and...Ch. 2 - What is specific gravity? How is it related to...Ch. 2 - The specific weight of a system is defined as the...Ch. 2 - Prob. 5CPCh. 2 - Under what conditions is the ideal-gas assumption...Ch. 2 - What is the difference between R and Ru? How are...Ch. 2 - A fluid that occupies a volume of 24 L weighs 22 N...Ch. 2 - Prob. 9PCh. 2 - A mass of 1-Ibm of argon is maintained at 200 psia...
Ch. 2 - What is the specific volume of oxygen at 40 psia...Ch. 2 - The air in an automobile tire with a volume of...Ch. 2 - The pressure in an automobile tire depends on the...Ch. 2 - A spherical balloon with a diameter of 9 m is...Ch. 2 - Prob. 16PCh. 2 - Prob. 18EPCh. 2 - Does water boil at higher temperatures at higher...Ch. 2 - Prob. 22CPCh. 2 - What is cavitation? What causes it?Ch. 2 - What is vapor pressure? How is it related to...Ch. 2 - Prob. 24EPCh. 2 - A pump is used to transport water to a higher...Ch. 2 - Prob. 26PCh. 2 - The analysis of a propeller that operates in water...Ch. 2 - What is flow energy? Do fluids at rest possess any...Ch. 2 - How do the energies of a flowing fluid and a fluid...Ch. 2 - Prob. 30CPCh. 2 - Prob. 31CPCh. 2 - List the forms of energy that contribute to the...Ch. 2 - How are heat, internal energy, and thermal energy...Ch. 2 - Using average specific heats, explain how internal...Ch. 2 - Prob. 35CPCh. 2 - Saturated water vapor at 150°C (enthalpy...Ch. 2 - Prob. 37CPCh. 2 - What does the coefficient of volume expansion of a...Ch. 2 - Can the coefficient of compressibility of a fluid...Ch. 2 - Water at 15°C and 1 atm pressure is heated to 95°C...Ch. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Water at 1 atm pressure is compressed to 400 atm...Ch. 2 - The volume of an ideal gas is to be reduced by...Ch. 2 - Saturated refrigerant-134a liquid at 10C is cooled...Ch. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - The density of seawater at a free surface where...Ch. 2 - Prob. 49EPCh. 2 - Prob. 50EPCh. 2 - Prob. 51PCh. 2 - The ideal gas equation of state is very simple,...Ch. 2 - A frictionless piston-cylinder device contains 10...Ch. 2 - Reconsider Prob. 2-48. Assuming a bear pressure...Ch. 2 - Prob. 55CPCh. 2 - Prob. 56CPCh. 2 - Prob. 57CPCh. 2 - Prob. 58CPCh. 2 - Prob. 59CPCh. 2 - Prob. 60CPCh. 2 - Is then sonic ve1ocity a specified medium a fixed...Ch. 2 - The Airbus A-340 passenger plane has a maximum...Ch. 2 - Carbon dioxide enters an adiabatic nozzle at 1200...Ch. 2 - Prob. 64PCh. 2 - Assuming ideal gas behavior, determine the speed...Ch. 2 - Prob. 66PCh. 2 - Steam flows through a device with a pressure of...Ch. 2 - Prob. 69EPCh. 2 - Air expands isentropically from 2.2 MPa 77C to 0.4...Ch. 2 - Repeat Prob. 2-66 for helium gas.Ch. 2 - Prob. 72PCh. 2 - What is viscosity? What is the cause of it is...Ch. 2 - Prob. 74CPCh. 2 - How does the kinematic viscosity of (a) liquids...Ch. 2 - Prob. 76CPCh. 2 - Prob. 77CPCh. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - Consider the flow of a fluid with viscosity ...Ch. 2 - A thin 30cm30cm flat plate is pulled at 3 m/s...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - The dynamic viscosity of carbon dioxide at 50°C...Ch. 2 - For flow over a plate, the variation of velocity...Ch. 2 - In regions far from the entrance, fluid flow...Ch. 2 - Repeat Prob. 2-83 for umax=6m/s .Ch. 2 - A frustum-shaped body is rotating at a constant...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - A large plate is pulled at a constant speed of U =...Ch. 2 - A cylinder of mass m slides down from rest in a...Ch. 2 - A thin plate moves between two parallel,...Ch. 2 - Prob. 95PCh. 2 - What is surface tension” What is its cause? Why is...Ch. 2 - Prob. 97CPCh. 2 - What is the capillary effect? What is its cause?...Ch. 2 - Prob. 99CPCh. 2 - Is the capillary rise greater in small- or...Ch. 2 - Prob. 101PCh. 2 - A2.4-in-diameter soap bubble is to be enlarged by...Ch. 2 - Prob. 103PCh. 2 - Determine the gage pressure inside a soap bubble...Ch. 2 - A 0.03-in-diameter glass tube is inserted into...Ch. 2 - Prob. 106PCh. 2 - A capillary tube of 1.2 mm diameter is immersed...Ch. 2 - Prob. 108PCh. 2 - Contrary to what you might expect, a solid steel...Ch. 2 - Nutrients dissolved in water are carried to upper...Ch. 2 - Prob. 111PCh. 2 - Consider a 55-cm-long journal bearing that is...Ch. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - A rigid tank contains an ideal gas at 300kPa and...Ch. 2 - The absolute pressure of an automobile tire is...Ch. 2 - The composition of a liquid with suspended solid...Ch. 2 - Prob. 119PCh. 2 - A 10-m3 tank contacts nitrogen at 25C and 800kPa....Ch. 2 - Prob. 123PCh. 2 - Although liquids, in general, are hard to...Ch. 2 - Prob. 125PCh. 2 - Prob. 126PCh. 2 - Prob. 127PCh. 2 - Reconsider Prob. 2-120. The shaft now rotates with...Ch. 2 - A 10-cm diameter cylindrical shaft rotates inside...Ch. 2 - Some rocks or bricks contain small air pockets in...Ch. 2 - Prob. 131PCh. 2 - Prob. 132PCh. 2 - Prob. 133PCh. 2 - Prob. 134PCh. 2 - Liquid water vaporizes into water vaper as it ?aws...Ch. 2 - In a water distribution system, the pressure of...Ch. 2 - Prob. 137PCh. 2 - The difference between the energies of a flowing...Ch. 2 - Prob. 139PCh. 2 - An ideal gas is compressed isothermally from...Ch. 2 - Prob. 141PCh. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Water is compressed from 100 kPa to 5000 kPa at...Ch. 2 - Prob. 145PCh. 2 - The dynamic viscosity of air at 20C and 200kPa is...Ch. 2 - A viscometer constructed of two 30-cm -long...Ch. 2 - Prob. 148PCh. 2 - Prob. 149PCh. 2 - Prob. 150PCh. 2 - Prob. 151PCh. 2 - Prob. 152PCh. 2 - Prob. 153PCh. 2 - Prob. 154PCh. 2 - Evan though steel is about 7 to 8 times denser...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An incompressible fluid (water) flows steadily from an open tank. The elevation of point 1 is 10.0m, and the elevation of point 2 and 3 is 2.00m. The cross-sectional area at point 2 is 0.0680 m^2, at point 3 it is 0.0360 m^2. The area of the tank is very large compared to the cross-sectional area of the pipe. Assuming that Bernoulli’s equation applies, compute: (a) The discharge rate in cubic meters per second;(b) The gauge pressure at point 2.arrow_forwardAn incompressible fluid (water) flows steadily from an open tank. The elevation of point 1 is 10.0m, and the elevation of point 2 and 3 is 2.00m. The cross-sectional area at point 2 is 0.0680 m^2, at point 3 it is 0.0360 m^2. The area of the tank is very large compared to the cross-sectional area of the pipe. Assuming that Bernoulli’s equation applies, compute: The gauge pressure at point 2.arrow_forwardShow that the velocity of an incompressible flow has zero divergence.arrow_forward
- P4.41 As mentioned in P4.41, is the velocity profile for laminar flow between two plates, as in Fig. u = 4umaxy(hy) h² v=w=0 If the wall temperature is Tw at both walls, use the incompressible-flow energy equation (4.75) to solve for the temperature distribution T(y) between the walls for steady flow. y = h y = 0 y \u{y) T(y) Twarrow_forward3 D, - 6 cm Three pipes steadily deliver water at 20°C to a large exit pipe in Fig. P3.8. The D;-5 cm velocity V2 = 5 m/s, and the exit flow rate Q4 = 120 m3/h. Find (a) V1; (b) V3; and (c) V4 if it is known that increasing Q3 by 20% would increase Q4 by 10%.. D. =9 cm D, -4 cm Ans:arrow_forwardI need the answer as soon as possiblearrow_forward
- SAE 30W oil at 20 ° C flows through the 9-cm-diameterpipe in Fig. P4.87 at an average velocity of 4.3 m/s. ( a ) Verify that the flow is laminar. ( b ) Determine the volumeflow rate in m 3 /h. ( c ) Calculate the expected reading hof the mercury manometer, in cm.arrow_forward(E) A uniform stream of fluid with speed U at infinity flows two-dimensionally and irrota- tionally towards a circular cylinder of radius a. The surface of the cylinder is porous and fluid is drawn inwards with normal velocity 2U inwards at the surface. The circulation about the cylinder is zero. 1. Find a real velocity potential for the flow. 2. Find a complex velocity potential for the flow. 3. Find any stagnation points in the flow 4. Find a streamfunction for the flow. 5. Sketch the streamlines of the flow, distinguishing quantitatively between the fluid entering the cylinder and the fluid passing the cylinder.arrow_forwardWater in a vertical (i.e., gravitational force of the fluid in the nozzle plays a role, and the elevation change in the Bernoulli's Equation, if needed, should be considered) pipe is charging from an attached bend nozzle into the atmosphere as shown in Fig. 5. The nozzle's weight is 20 kg. The pipe and the nozzle are connected by a flange. The gage pressure of the flow at the flange is 35 kPa when the discharge rate is 0.1 m³/s. The volume of the bending nozzle is 0.012 m³. Calculate the vertical component of the anchoring forcing required to hold the nozzle in place and determine its direction. G= 9.81 m/s². The density of water is 1000 kg/m³. ChatGPT solution: Nozzle 1 Area -0.01 m² P-35 kPa Area -0.025 m² 0.10 ms Figure 5: Q5 35 degreearrow_forward
- I nree pipes steadiy aenver water at 20°C to a large exit pipe in Fig. P3.8. The velocity V, = 5 m/s, and the exit flow rate Q = 120 m/h. Find (a) V,, (b) V, and (c) V, if it is known that increasing Q, by 20 percent would increase Q4 by 10 percent. D3 = 6 cm D2 = 5 cm D4 = 9 cm D = 4 cmarrow_forwardPlease help me to answer qauestion (b) by today. Please give details explanation. thank youarrow_forwardDon't give handwritten solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Hydronics Step by Step; Author: Taco Comfort Solutions;https://www.youtube.com/watch?v=-XGNl9kppR8;License: Standard Youtube License