
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.54E
Someone proposes that the Joule-Thomson coefficient can also be defined as
UJT =
Is this definition valid? Why or why not?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Do you do chemistry assignments
Using the conditions of spontaneity to deduce the signs of AH and AS
Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy
AS.
Note: if you have not been given enough information to decide a sign, select the "unknown" option.
reaction
observations
conclusions
A
This reaction is always spontaneous, but
proceeds slower at temperatures above
120. °C.
ΔΗ is
(pick one)
AS is
(pick one)
ΔΗ is
(pick one)
B
This reaction is spontaneous except above
117. °C.
AS is
(pick one)
ΔΗ is
(pick one)
This reaction is slower below 20. °C than
C
above.
AS is
|(pick one)
?
18
Ar
1
Calculating the pH at equivalence of a titration
Try Again
Your answer is incorrect.
0/5
a
A chemist titrates 70.0 mL of a 0.7089 M hydrocyanic acid (HCN) solution with 0.4574M KOH solution at 25 °C. Calculate the pH at equivalence. The pK of
hydrocyanic acid is 9.21.
Round your answer to 2 decimal places.
Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of KOH solution added.
pH
=
11.43]
G
00.
18
Ar
B•
Chapter 2 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 2 - Calculatethe work performed by a person whoexertsa...Ch. 2 - Explain inyour own words why work done by the...Ch. 2 - Calculate the work in joules when a piston moves...Ch. 2 - Calculatethe work on the system whena piston is...Ch. 2 - Calculatethe work in joules needed to expanda...Ch. 2 - Consider exercise 2.5. Would the workbe more or...Ch. 2 - Apistonhaving0.033 mol ofgas at 35.0Cexpands...Ch. 2 - A bottle of soda has a head space containing 25.0...Ch. 2 - Prob. 2.9ECh. 2 - Calculate the specific heat of a material if 288J...
Ch. 2 - There is 3930 J of energy added to a 79.8-g sample...Ch. 2 - If the heat capacity varies withtemperature,...Ch. 2 - Liquid hydrogen fluoride, liquid water,and liquid...Ch. 2 - A 5-mmdiameter hailstone has a terminal velocity...Ch. 2 - A7.50-gpiece of iron at 100.0C is dropped into...Ch. 2 - With reference to Joules apparatus inFigure2.6,...Ch. 2 - Prob. 2.17ECh. 2 - True or false: Althoughwork done bya free...Ch. 2 - What arethe differencesbetween an open, a closed,...Ch. 2 - The statement Energycan beneithercreatednor...Ch. 2 - Prob. 2.21ECh. 2 - What is the change in internal energy when a gas...Ch. 2 - Calculate the work for the isothermal, reversible...Ch. 2 - Calculate the work donewhen 1.000 mole of an ideal...Ch. 2 - Apistonhaving0.033 mol of gas at 35.0C expands...Ch. 2 - Prob. 2.26ECh. 2 - Indicate which state function is equal to heat, q,...Ch. 2 - The distance between downtown San Francisco and...Ch. 2 - Is temperature astate function?Defend your answer.Ch. 2 - A piston reversibly and adiabatically contracts...Ch. 2 - Calculate U when 1.00 mol of H2 goes from 1.00...Ch. 2 - Many compressed gases come in large,heavy metal...Ch. 2 - Under what conditions will U be exactly zero for a...Ch. 2 - Aballoon filled with 0.505 mole of gascontracts...Ch. 2 - A piston having 7.23 g of steam at 110 C increases...Ch. 2 - It takes 2260 J to vaporize a gram of liquid water...Ch. 2 - True or false: Any process for which H is negative...Ch. 2 - Prob. 2.38ECh. 2 - A refrigerator contains approximately 17cubic...Ch. 2 - In a constant-volume calorimeter, 35.0g of H2cools...Ch. 2 - A 2.50-mol sample of gas is compressed...Ch. 2 - A 244-g amount of coffee in an open plastic cup...Ch. 2 - Prob. 2.43ECh. 2 - Starting with equation 2.27 andthe original...Ch. 2 - Derive the fact that HpT is also zero for an ideal...Ch. 2 - Define isobaric,isochoric, isenthalpic,and...Ch. 2 - Starting from the cyclicrule involvingthe Joule-...Ch. 2 - The ideal gas law is theequation of state for an...Ch. 2 - Prob. 2.49ECh. 2 - Estimatethe final temperature of a mole of gas at...Ch. 2 - With regard to exercise 2.50, how accurate do you...Ch. 2 - Use the data in Table 2.2 to determine Hp T for Ar...Ch. 2 - Use the data in Table 2.2 to determine PH T for N2...Ch. 2 - Someone proposes thatthe Joule-Thomson coefficient...Ch. 2 - Why is equation2.37 written interms of CV and Cp...Ch. 2 - What are the numerical values of the heat...Ch. 2 - In a constant-pressure calorimeter that is, one...Ch. 2 - What is the finaltemperature of0.122 mole...Ch. 2 - Prob. 2.59ECh. 2 - Show that =5/3 for a monatomic ideal gas.Ch. 2 - Prob. 2.61ECh. 2 - Prob. 2.62ECh. 2 - A 1.00 mol sample of H2 is carefully warmed from...Ch. 2 - Asampleof a monatomic ideal gas doubles itsvolume...Ch. 2 - A sample of an ideal diatomic gas is compressed...Ch. 2 - In orbit about Earth, a weather balloonjettisons a...Ch. 2 - Prob. 2.67ECh. 2 - Prob. 2.68ECh. 2 - If pumping up an automobile tire is assumed to be...Ch. 2 - Prob. 2.70ECh. 2 - Take the volume change into account and calculate...Ch. 2 - How much work is performed by 1 mole of water...Ch. 2 - Why are steam burns so much worse than water burns...Ch. 2 - How many grams of water at 0C will be melted by...Ch. 2 - Draw a diagram like Figure 2.11 that illustrates...Ch. 2 - Determine the rxnH(25C) of the following reaction:...Ch. 2 - Determine rxnH 25 C for the following reaction: NO...Ch. 2 - The enthalpy of combustion of...Ch. 2 - The enthalpy of combustion of diamond is -395.4...Ch. 2 - Using Hesss law, writeout allof the formation...Ch. 2 - Sublimation is the phase change from solid to gas...Ch. 2 - The thermite reaction combines aluminum powder and...Ch. 2 - Benzoic acid, C6H5COOH, is a common standard used...Ch. 2 - Assume that 1.20 g of benzoicacid, C6H5COOH, is...Ch. 2 - Natural gas is mostly CH4. When it burns, the...Ch. 2 - Assuming constant heatcapacities for products and...Ch. 2 - Use the heat capacities of the products and...Ch. 2 - The following are values of heat capacity for...Ch. 2 - Prob. 2.89ECh. 2 - Prob. 2.90ECh. 2 - The Dieterici equation of state for one mole of...Ch. 2 - Prob. 2.92ECh. 2 - Find the enthalpies of the combustion reactions...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Biological Macromolecules Naming and drawing the products of aldose oxidation and reduction aw a Fischer projection of the molecule that would produce L-ribonic acid if it were subjected to mildly oxidizing reaction conditions. Click and drag to start drawing a structure. X AP ‡ 1/5 Naor Explanation Check McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Center Accessibilarrow_forward● Biological Macromolecules Identifying the parts of a disaccharide Take a look at this molecule, and then answer the questions in the table below it. CH2OH O H H H OH OH OH H H CH2OH H O OH H OH H H H H OH Is this a reducing sugar? Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. Explanation Check O yes X O no ○ yes O no Uarrow_forwardThe aim of the lab is to measure the sodium content from tomato sauce using the Mohr titration method. There are two groups being: Regular Tomato sauce & Salt Reduced tomato sauce QUESTION: State how you would prepare both Regular & Salt reduced tomato sauce samples for chemical analysis using the Mohr titration methodarrow_forward
- Using the conditions of spontaneity to deduce the signs of AH and AS Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions A The reverse of this reaction is always spontaneous but proceeds faster at temperatures above -48. °C. ΔΗ is (pick one) ✓ AS is (pick one) B This reaction is spontaneous except below 114. °C but proceeds at a slower rate below 135. °C. ΔΗ is (pick one) AS is (pick one) ΔΗ is C This reaction is exothermic and proceeds faster at temperatures above -43. °C. (pick one) AS is (pick one) v Х 5 ? 18 Ararrow_forwardion. A student proposes the following Lewis structure for the perchlorate (CIO) io : :0: : Cl : - - : :0: ك Assign a formal charge to each atom in the student's Lewis structure. atom central O formal charge ☐ top O ☐ right O ☐ bottom O ☐ Cl ☐arrow_forwardDecide whether these proposed Lewis structures are reasonable. proposed Lewis structure Yes. Is the proposed Lewis structure reasonable? Cl- : 2: :Z: :Z: N—N : 0: C C1: O CO No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* ☐ Yes. No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | Yes. No, it has the wrong number of valence electrons. The correct number is: No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | If two or more atoms of the same element don't satisfy the octet rule, just enter the chemical symbol as many times as necessary. For example, if two oxygen atoms don't satisfy the octet rule, enter "0,0". ☑arrow_forward
- Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions ΔΗ is (pick one) A This reaction is faster above 103. °C than below. AS is (pick one) ΔΗ is (pick one) B This reaction is spontaneous only above -9. °C. AS is (pick one) ΔΗ is (pick one) C The reverse of this reaction is always spontaneous. AS is (pick one) 18 Ararrow_forwardUse the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions A The reverse of this reaction is always spontaneous but proceeds slower at temperatures below 41. °C. ΔΗ is (pick one) AS is (pick one) ΔΗ is (pick one) B This reaction is spontaneous except above 94. °C. AS is (pick one) This reaction is always spontaneous, but ΔΗ is (pick one) C proceeds slower at temperatures below −14. °C. AS is (pick one) Х 00. 18 Ar 무ㅎ B 1 1arrow_forwardDraw the product of the reaction shown below. Ignore inorganic byproducts. + H CH3CH2OH HCI Drawingarrow_forward
- please explain this in simple termsarrow_forwardK Most Reactive Na (3 pts) Can the metal activity series (shown on the right) or a standard reduction potential table explain why potassium metal can be prepared from the reaction of molten KCI and Na metal but sodium metal is not prepared from the reaction of molten NaCl and K metal? Show how (not). Ca Mg Al с Zn Fe Sn Pb H Cu Ag Au Least Reactivearrow_forward(2 pts) Why is O2 more stable as a diatomic molecule than S2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY