![PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.](https://www.bartleby.com/isbn_cover_images/9781285074788/9781285074788_largeCoverImage.gif)
A piston having 7.23 g of steam at 110 °C increases its temperature by 35 °C. At the same time, it expands from a volume of 2.00 L to 8.00 L against a constant external pressure of 0.985 atm. Calculate w, q, ΔU, and ΔH for the process.
![Check Mark](/static/check-mark.png)
Interpretation:
A piston having 7.23 g of steam at 110 °C increases its temperature by 35 °C. At the same time, it expands from a volume of 2.00 L to 8.00 L against a constant external pressure of 0.985 atm. For the process w, q, ΔU, and ΔH is to be calculated.
Concept introduction:
Larger collection of atoms and molecules can be handled easily with the concepts of thermodynamics. The terms heat, work, internal energy, and enthalpy can be explained well by macroscopic rules. When an object is moving distance s due to the externally applied force F, then it is called some work has been done on an object.
Therefore, work (w) = F. s
In constant external pressure (Pex), the small amount of work done by the system (dw) to the surroundings with infinitesimal small change of volume (dV) is given by the expression
The decrease of system energy is denoted by the negative sign. Normally, heat is defined as the measurement of thermal energy transfer that can be obtained by the temperature change in an object and is referred by the symbol q. when the heat enters into the system it is getting positive sign and when the heat comes out of the system it obtains negative sign. Notably, the overall energy content of the system is defined as internal energy (ΔU). The internal energy values for an isolated system is zero. since, no heat can enter into the system. Mathematically, internal energy can be written as,
Primarily, most of the processes are carried out at constant pressure, instead of constant volume, thus, a new concept of enthalpy was introduced. Thus, the enthalpy (H) of a system, involving pressure volume work, is given by the expression,
H = U + pV
In a given system, the enthalpy and internal energy are governed by state variables of the system.
Answer to Problem 2.35E
For the mentioned process the values of w, q, ΔU, and ΔH is calculated as follows;
Explanation of Solution
The first law thermodynamics is basically including the three fundamental parameters work, heat and internal energy. Enthalpy and internal energy are referred as state functions.
Given,
From the values of temperature difference of the system, the quantity of heat absorbed by the system q is calculated as = 516 J
Work (w):
Thus, For the process w, q, ΔU, and ΔH is calculated.
Want to see more full solutions like this?
Chapter 2 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Conservation of mass was discussed in the background. Describe how conservation of mass (actual, not theoretical) could be checked in the experiment performed.arrow_forwardWhat impact would adding twice as much Na2CO3 than required for stoichiometric quantities have on the quantity of product produced? Initial results attachedarrow_forwardGiven that a theoretical yield for isolating Calcium Carbonate in this experiment would be 100%. From that information and based on the results you obtained in this experiment, describe your success in the recovery of calcium carbonate and suggest two possible sources of error that would have caused you to not obtain 100% yield. Results are attached form experimentarrow_forward
- 5) Calculate the flux of oxygen between the ocean and the atmosphere(2 pts), given that: (from Box 5.1, pg. 88 of your text): Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturated What is flux if the temperature is 10°C ? (2 pts) (Hint: use the same density in your calculations). Why do your calculated values make sense (or not) based on what you know about the relationship between gas solubility and temperature (1 pt)?arrow_forwardFind a molecular formula for these unknownsarrow_forward(ME EX2) Prblms 8-11 Can you please explain problems 8 -11 to me in detail, step by step? Thank you so much! If needed color code them for me.arrow_forward
- Don't used hand raitingarrow_forwardThe following 'H NMR spectrum was taken with a 750 MHz spectrometer: 1.0 0.5 0.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 ' 2.0 1.0 0.0 (ppm) What is the difference Av in the frequency of RF ac Δν ac radiation absorbed by the a and c protons? (Note: it's not equal to the difference in chemical shifts.) Round your answer to 2 significant digits, and be sure it has an appropriate unit symbol. = O O a will shift left, c will shift right. O a will shift right, c will shift left. a and c will both shift left, with more space between them. Suppose a new spectrum is taken with a 500 MHz spectrometer. What will be true about this new spectrum? O a and c will both shift left, with less space between them. O a and c will both shift right, with more space between them. O a and c will both shift right, with less space between them. Which protons have the largest energy gap between spin up and spin down states? O None of the above. ○ a Ob Explanation Check C Ar B 2025 McGraw Hill LLC. All Rights Reserved.…arrow_forwardWhat mass of Na2CO3 must you add to 125g of water to prepare 0.200 m Na2CO3? Calculate mole fraction of Na2CO3, mass percent, and molarity of the resulting solution. MM (g/mol): Na2CO3 105.99; water 18.02. Final solution density is 1.04 g/mL.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)