PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.32E
Many compressed gases come in large, heavy metal cylinders that are so heavy that they need a special cart to move them around. An 80.0-L tank of nitrogen gas pressurized to 172 atm is left in the sun and heats from its normal temperature of 20.0°C to 140.0°C. Determine (a) the final pressure inside the tank and (b) the work, heat, and ∆U of the process. Assume that behavior is ideal and the heat capacity of diatomic nitrogen is 21.0 J/mol.K.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
An essential part of the experimental design process is to select appropriate dependent and
independent variables.
True
False
10.00 g of Compound X with molecular formula C₂Hg are burned in a constant-pressure calorimeter containing 40.00 kg of water at 25 °C. The temperature of
the water is observed to rise by 2.604 °C. (You may assume all the heat released by the reaction is absorbed by the water, and none by the calorimeter itself.)
Calculate the standard heat of formation of Compound X at 25 °C.
Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.
need help not sure what am doing wrong step by step please answer is 971A
During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration.
What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
Chapter 2 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 2 - Calculatethe work performed by a person whoexertsa...Ch. 2 - Explain inyour own words why work done by the...Ch. 2 - Calculate the work in joules when a piston moves...Ch. 2 - Calculatethe work on the system whena piston is...Ch. 2 - Calculatethe work in joules needed to expanda...Ch. 2 - Consider exercise 2.5. Would the workbe more or...Ch. 2 - Apistonhaving0.033 mol ofgas at 35.0Cexpands...Ch. 2 - A bottle of soda has a head space containing 25.0...Ch. 2 - Prob. 2.9ECh. 2 - Calculate the specific heat of a material if 288J...
Ch. 2 - There is 3930 J of energy added to a 79.8-g sample...Ch. 2 - If the heat capacity varies withtemperature,...Ch. 2 - Liquid hydrogen fluoride, liquid water,and liquid...Ch. 2 - A 5-mmdiameter hailstone has a terminal velocity...Ch. 2 - A7.50-gpiece of iron at 100.0C is dropped into...Ch. 2 - With reference to Joules apparatus inFigure2.6,...Ch. 2 - Prob. 2.17ECh. 2 - True or false: Althoughwork done bya free...Ch. 2 - What arethe differencesbetween an open, a closed,...Ch. 2 - The statement Energycan beneithercreatednor...Ch. 2 - Prob. 2.21ECh. 2 - What is the change in internal energy when a gas...Ch. 2 - Calculate the work for the isothermal, reversible...Ch. 2 - Calculate the work donewhen 1.000 mole of an ideal...Ch. 2 - Apistonhaving0.033 mol of gas at 35.0C expands...Ch. 2 - Prob. 2.26ECh. 2 - Indicate which state function is equal to heat, q,...Ch. 2 - The distance between downtown San Francisco and...Ch. 2 - Is temperature astate function?Defend your answer.Ch. 2 - A piston reversibly and adiabatically contracts...Ch. 2 - Calculate U when 1.00 mol of H2 goes from 1.00...Ch. 2 - Many compressed gases come in large,heavy metal...Ch. 2 - Under what conditions will U be exactly zero for a...Ch. 2 - Aballoon filled with 0.505 mole of gascontracts...Ch. 2 - A piston having 7.23 g of steam at 110 C increases...Ch. 2 - It takes 2260 J to vaporize a gram of liquid water...Ch. 2 - True or false: Any process for which H is negative...Ch. 2 - Prob. 2.38ECh. 2 - A refrigerator contains approximately 17cubic...Ch. 2 - In a constant-volume calorimeter, 35.0g of H2cools...Ch. 2 - A 2.50-mol sample of gas is compressed...Ch. 2 - A 244-g amount of coffee in an open plastic cup...Ch. 2 - Prob. 2.43ECh. 2 - Starting with equation 2.27 andthe original...Ch. 2 - Derive the fact that HpT is also zero for an ideal...Ch. 2 - Define isobaric,isochoric, isenthalpic,and...Ch. 2 - Starting from the cyclicrule involvingthe Joule-...Ch. 2 - The ideal gas law is theequation of state for an...Ch. 2 - Prob. 2.49ECh. 2 - Estimatethe final temperature of a mole of gas at...Ch. 2 - With regard to exercise 2.50, how accurate do you...Ch. 2 - Use the data in Table 2.2 to determine Hp T for Ar...Ch. 2 - Use the data in Table 2.2 to determine PH T for N2...Ch. 2 - Someone proposes thatthe Joule-Thomson coefficient...Ch. 2 - Why is equation2.37 written interms of CV and Cp...Ch. 2 - What are the numerical values of the heat...Ch. 2 - In a constant-pressure calorimeter that is, one...Ch. 2 - What is the finaltemperature of0.122 mole...Ch. 2 - Prob. 2.59ECh. 2 - Show that =5/3 for a monatomic ideal gas.Ch. 2 - Prob. 2.61ECh. 2 - Prob. 2.62ECh. 2 - A 1.00 mol sample of H2 is carefully warmed from...Ch. 2 - Asampleof a monatomic ideal gas doubles itsvolume...Ch. 2 - A sample of an ideal diatomic gas is compressed...Ch. 2 - In orbit about Earth, a weather balloonjettisons a...Ch. 2 - Prob. 2.67ECh. 2 - Prob. 2.68ECh. 2 - If pumping up an automobile tire is assumed to be...Ch. 2 - Prob. 2.70ECh. 2 - Take the volume change into account and calculate...Ch. 2 - How much work is performed by 1 mole of water...Ch. 2 - Why are steam burns so much worse than water burns...Ch. 2 - How many grams of water at 0C will be melted by...Ch. 2 - Draw a diagram like Figure 2.11 that illustrates...Ch. 2 - Determine the rxnH(25C) of the following reaction:...Ch. 2 - Determine rxnH 25 C for the following reaction: NO...Ch. 2 - The enthalpy of combustion of...Ch. 2 - The enthalpy of combustion of diamond is -395.4...Ch. 2 - Using Hesss law, writeout allof the formation...Ch. 2 - Sublimation is the phase change from solid to gas...Ch. 2 - The thermite reaction combines aluminum powder and...Ch. 2 - Benzoic acid, C6H5COOH, is a common standard used...Ch. 2 - Assume that 1.20 g of benzoicacid, C6H5COOH, is...Ch. 2 - Natural gas is mostly CH4. When it burns, the...Ch. 2 - Assuming constant heatcapacities for products and...Ch. 2 - Use the heat capacities of the products and...Ch. 2 - The following are values of heat capacity for...Ch. 2 - Prob. 2.89ECh. 2 - Prob. 2.90ECh. 2 - The Dieterici equation of state for one mole of...Ch. 2 - Prob. 2.92ECh. 2 - Find the enthalpies of the combustion reactions...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Influence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forwardThe name of the following molecule is: Νarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY