
Concept explainers
(a)
To classify:
(a)

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
- The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
- Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “Si” symbol. This is Silicon. It is a metalloid.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “Zn” symbol. This is Zinc. It is a metal.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “B” symbol. This is Boron. It is a metalloid.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
- Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “N” symbol. This is Nitrogen. It is a nonmetal.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “K” symbol. This is Potassium. It is a metal.
To classify:

Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “S” symbol. This is Sulfur. It is a nonmetal.
In order to select if this is a metal, nonmetal or metalloid, one must identify the element and find it in the periodic table.
Want to see more full solutions like this?
Chapter 2 Solutions
Chemistry for Engineering Students
- Don't used hand raiting and don't used Ai solutionarrow_forward2. (15 points) Draw an appropriate mechanism for the following reaction. H N. H* + H₂Oarrow_forwardDraw a tripeptide of your choosing at pH 7. Have the N-terminus on the left and the C-terminus on the right. Then: Draw a triangle around the α-carbons. Draw a box around the R-groups. Circle the atoms capable of hydrogen bonding. Highlight the atoms involved in the formation of the peptide bonds. What type of structure have you drawn? (primary, secondary, tertiary or quaternary protein structure). make sure its a tripeptidearrow_forward
- > Organic Functional Groups Naming and drawing alkyl halides structure CI Br CI CI Explanation Check 2 name 1-chloro-2,4,9-trimethylnonane CI 2-iodo-2,3-dimethylbutane FEB 19 € E M tv MacBook Airarrow_forwardCan you please explain to me this problem im very confused and lost. Help me step by step and in detail im soo lost.arrow_forward2) There are many forms of cancer, all of which involve abnormal cell growth. The growth and production of cells, called cell proliferation, is known to involve an enzyme called protein farnesyltransferase (PFTase). It is thought that inhibitors pf PFTase may be useful as anticancer drugs. The following molecule showed moderate activity as a potential PFTase inhibitor. Draw all stereoisomers of this compound. HO OHarrow_forward
- Considering rotation around the bond highlighted in red, draw the Newman projection for the most stable and least stable conformations when viewed down the red bond in the direction of the arrow. Part 1 of 2 H₁₂C H H Draw the Newman projection for the most stable conformation. Select a template to begin. Part 2 of 2 Draw the Newman projection for the least stable conformation. G 心arrow_forwardpersonality of each of them in terms of nucleophile vs. electrophile (some can be considered acids/bases but we are not looking at that here). Note you may have to use your growing intuition to figure out the personality of one of the molecules below but I believe in you! Rationalize it out based on what we have called strong versus weak electrophiles in past mechanisms. Consider using the memes below to help guide your understanding! A OH O B CH3 C Molecule A: [Select] Molecule B: [Select] Molecule C: [Select] Molecule D: [Select] > H D OHarrow_forward4) Which oxygen atom in the structure below is most basic / nucleophilic? Please explain by discussing the electron density around each oxygen atom. Show at least three resonance structures for the compound. оогоarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning




