Concept explainers
(a)
To classify:
(a)
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
- The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
- Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “Si” symbol. This is Silicon. It is a metalloid.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “Zn” symbol. This is Zinc. It is a metal.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “B” symbol. This is Boron. It is a metalloid.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
- Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “N” symbol. This is Nitrogen. It is a nonmetal.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
- Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “K” symbol. This is Potassium. It is a metal.
To classify:
Explanation of Solution
In the periodic table, elements increase in metallic nature when approaching the “left” side of the table. The nonmetal nature increase as we go from left to right.
The most common physical characteristics for metals are given as follow:
- Mostly solids at room temperature
- Malleable
- Brittle and metallic luster
- Conducts electricity and heat efficiently
The most common physical characteristics for nonmetals are given as follow:
Mostly liquids or gases at room temperature
- Poor heat and electricity conductors
- No metallic luster
- Brittle if solid only.
There is a third set of elements, which are considered to be metalloids, due to the nature of both, metal and nonmetal.
Semiconductors of electricity
- Mostly solids
- Slightly malleable and brittles
As stated before, the metallic nature of elements increases to the top/left of the periodic table, and decreases as we go to the bottom right side of the table.
Nonmetals will, therefore, increase in nonmetallic nature when going bottom-right and decrease when going top-left side.
Metalloids are defined as having both properties, therefore, they must be found between the metals and nonmetals.
Now, identify the element by the “S” symbol. This is Sulfur. It is a nonmetal.
In order to select if this is a metal, nonmetal or metalloid, one must identify the element and find it in the periodic table.
Want to see more full solutions like this?
Chapter 2 Solutions
Chemistry for Engineering Students
- 2.46 Why are nonmetals important even though they account for only a very small fraction of the elements in the periodic table?arrow_forwardClassify the following as metals, nonmetals, or metalloids: a.argon b.element 3 c.Ge d.boron e.Pmarrow_forwardWhich of the following elements is a metalloid? (a) Ge (b) S (c) Be (d) Alarrow_forward
- What defines an element? How many naturally occurring elements exist?arrow_forwardOne of the best indications of a useful theory is that it raises more questions for further experimentation than it originally answered. How does this apply to Dalton’s atomic theory? Give examples.arrow_forwardA single molecule has a mass of 7.31 1023 g. Provide an example of a real molecule that can have this mass. Assume the elements that make up the molecule are made of light isotopes where the number of protons equals the number of neutrons in the nucleus of each element.arrow_forward
- What evidence led to the conclusion that cathode rays had a negative charge?arrow_forward2.96 Use the web to look up the density of different forms of steel, such as stainless steel or magnetic steel, and discuss whether or not the differences in the densities follow what might he predicted by looking at the periodic properties of elements.arrow_forwardTitanium and thallium have symbols that are easily confused with each other. Give the symbol, atomic number, atomic weight, and group and period number of each element. Are they metals, metalloids, or nonmetals?arrow_forward
- 2-43 Which group(s) of the Periodic Table contain(s): (a) Only metals? (b) Only metalloids? (c) Only nonmetals?arrow_forward2.40 What distinguished the work of Mendeleev that caused scientists to accept his concept of the periodic table when others before him were not believed?arrow_forwardHow would you expect the chemical properties of isotopes of the same element to compare to each other? Explain your answer.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning