ELEMENTARY PRINCIPLES OF CHEM. PROCESS.
ELEMENTARY PRINCIPLES OF CHEM. PROCESS.
4th Edition
ISBN: 9781119249214
Author: FELDER
Publisher: INTER WILE
Question
Book Icon
Chapter 2, Problem 2.38P
Interpretation Introduction

(a)

Interpretation:

The plot of ln y versus x on rectangular coordinates passes through (1.0, 693) and (2,0) should be drawn.

Concept introduction:

The straight-line plot has following equation:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  1

Here, ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  2 values are plotted at y axis, x values are plotted at x axis, b is slope of the reaction and ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  3 is intercept.

And, the following equation shows the exponential plot:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  4

Interpretation Introduction

(b)

Interpretation:

The semilog plot of y versus x passes through (1,2) and (2,1) should be drawn.

Concept introduction:

The straight-line plot has following equation:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  5

Here, ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  6 values are plotted at y axis, x values are plotted at x axis, b is slope of the reaction and ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  7 is intercept.

And, the following equation shows the exponential plot:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  8

Interpretation Introduction

(c)

Interpretation:

A log pot y versus x passes through (1,2) and (2,1), determine the equation.

Concept introduction:

The straight-line plot has following equation:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  9

Here, ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  10 values are plotted at y axis, x values are plotted at x axis, b is slope of the reaction and ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  11 is intercept.

And, the following equation shows the exponential plot:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  12

Interpretation Introduction

(d)

Interpretation:

A semilog plot of xy (logarithmic axis) versus y/x passes through (1.0. 40.2). Determine the equation.

Concept introduction:

The straight-line plot has following equation:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  13

Here, ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  14 values are plotted at y axis, x values are plotted at x axis, b is slope of the reaction and ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  15 is intercept.

And, the following equation shows the exponential plot:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  16

Interpretation Introduction

(e)

Interpretation:

The equation of log plot of y2/x versus (x-2) passes through (1.0, 40.2) and (2.0, 807.0)

Concept introduction:

The straight-line plot has following equation:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  17

Here, ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  18 values are plotted at y axis, x values are plotted at x axis, b is slope of the reaction and ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  19 is intercept.

And, the following equation shows the exponential plot:

ELEMENTARY PRINCIPLES OF CHEM. PROCESS., Chapter 2, Problem 2.38P , additional homework tip  20

Blurred answer
Students have asked these similar questions
#2 The isothermal gas-phase degradation reaction is given below. Pure ethane enters a flow reactor at 6 atm and 1100 K, with the pressure drop can be negligible. This reaction follows an elementary rate law. C2H6 → C2H4 + H2 a) Express the concentration of each species solely as a function of conversion. b) Write the reaction rate (the unit is mol/L-s) solely as a function of conversion (*rate constant k will be used in this mathematical expression). What is the unit of k. c) If this reaction is carried out in a constant volume batch reactor now, how to express the concentration of each species solely as a function of conversion?
#1 For the following liquid phase reaction, ethylene oxide reacts with water to form ethylene glycol in a CSTR. The entering concentrations of ethylene oxide and water are 16.13 mol/L and 55.5 mol/L, respectively. The reaction rate constant k = 0.1 L/mol·s at 300 K. This reaction follows an elementary rate law. Taking ethylene oxide as the limiting species (i.e., basis of the calculation). ན CH₂-OH | H2SO4 CH2-CH₂+H₂O CH₂-OH a) Express the concentration of each species solely as a function of conversion. b) Write the reaction rate solely as a function of conversion at 300 K.
#4 The gas phase reaction, as given below is carried out isothermally in a PFR with no pressure drop. The feed is equal molar in A and B, and the entering concentration of A is 0.1 mol/L. 2A + B → C a) What is the entering concentration of B? b) What are the concentrations of A, B, and C at 25% conversion of A? c) If at a particular conversion, the rate of formation of C is 2 mol/L-min, what is the rate of consumption of A at the same conversion?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The