During the early part of the 20th century, sulfanilamide (an antibacterial drug) was only administered by injection or in a solid pill. In 1937, a pharmaceutical company decided to market a liquid formulation of the drug. Since sulfanilamide was known to be highly insoluble in water and other common pharmaceutical solvents, a number of alternative solvents were tested and the drug was found to be soluble in diethylene glycol (DEG). After satisfactory results were obtained in tests of flavor, appearance, and fragrance, 240 gallons of sulfanilamide in DEG were manufactured and marketed as Elixir Sulfanilamide. After a number of deaths were determined to have been caused by the formulation, the Food and Drug Administration (FDA) mounted a campaign to recall the drug and recovered about 232 gallons. By this time, 107 people had died. The incident led to passage of the 1938 Federal Food, Drug, and Cosmetic Act that significantly tightened FDA safety requirements.
Not all of the quantities needed in solving the following problems can be found in the text. Give sources of such information and list all assumptions.
- The dosage instructions for the elixir were to “take 2 to 3 teaspoons in water every four hours.” Assume each teaspoon was pure DEG, and estimate the volume (mL) of DEG a patient would have consumed in a day.
- The lethal oral dose of diethylcne glycol has been estimated to be 1.4mLDEG/kg body mass. Determine the maximum patient mass (lb1T1) for which the daily dose estimated in Part (a) would be fatal. If you need values of quantities you cannot find in this text, use the Internet. Suggest three reasons w hy that dose could be dangerous to a patient whose mass is well above the calculated value.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
ELEM.PRIN.OF CHEMICAL PROC.-W/ACCESS
Additional Engineering Textbook Solutions
Starting Out With Visual Basic (8th Edition)
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Concepts Of Programming Languages
Starting Out with C++ from Control Structures to Objects (9th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
- and the viscosity of the water is 1.24 × 104 Nsm 2. Answer: Slug flow 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forwardA chemical reaction takes place in a container of cross-sectional area 50.0 cm2. As a result of the reaction, a piston is pushed out through 15 cm against an external pressure of 121 kPa. Calculate the work done (in J) by the system.arrow_forwardExample 7.2 Steam is generated in a high pressure boiler containing tubes 2.5 m long and 12.5 mm internal diameter. The wall roughness is 0.005 mm. Water enters the tubes at a pressure of 55.05 bar and a temperature of 270°C, and the water flow rate through each tube is 500 kg/h. Each tube is heated uniformly at a rate of 50 kW. Calle (a) Estimate the pressure drop across each tube (neglecting end effects) using (i) the homogeneous flow model and (ii) the Martinelli-Nelson correlation. (b) How should the calculation be modified if the inlet temperature were 230°C at the same pressure?arrow_forward
- Please solve this question by simulation in aspen hysysarrow_forward(11.35. For a binary gas mixture described by Eqs. (3.37) and (11.58), prove that: 4812 Pу132 ✓ GE = 812 Py1 y2. ✓ SE dT HE-12 T L = = (812 - 7 1/8/123) d² 812 Pylyz C=-T Pylyz dT dT² See also Eq. (11.84), and note that 812 = 2B12 B11 - B22. perimental values of HE for binary liquid mixtures ofarrow_forwardplease provide me the solution with more details. because the previous solution is not cleararrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The